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Preface

Not only God knows, I know, and by the end of the semester, you will know.

Sidney Coleman

Particle physics is a subject that strikes both awe and fear into students of
physics. Awe because particle physics is extremely far-reaching: its realm
ranges from the inner workings of atoms to the mechanisms for fusion in the
center of stars to the earliest moments of the universe. From a small number
of fundamental principles, all of these phenomena can be consistently
described and understood. On the other hand, fear because particle physics is
notorious for being a mathematically dense and abstract topic, and one for
which its experimental validation is often reduced to interpreting obscure
plots. Fancy mathematics can be mistaken for physical rigor, and a
mathematics-heavy approach to particle physics often hides a much simpler
structure.

Textbooks on particle physics for undergraduates are often organized
historically, which can add to confusion. Throughout the twentieth century,
more and more was learned about the subatomic world, but the way it
progressed was never linear. For example, hundreds of particles that we now
call hadrons were discovered in the mid-twentieth century, with no clear
organizing principle at the time. It wasn’t until the development of the strong
force, quantum chromodynamics (QCD), in the 1970s that an explanation of
all of these hadrons as combinations of only five fundamental particles, the
quarks, was firmly established. Only after introducing this zoo of particles
would a textbook that proceeds historically identify the simple principles
underlying this structure. The why should take precedence over how physical
phenomena manifest themselves, and a book that builds from the ground up
can’t proceed historically.

Additionally, particle physics is very much an active field of physics with
new data and discoveries. A modern book on particle physics needs to



include discussions of recent results, the most prominent of which is the
discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012.
However, to describe and motivate why the discovery of the Higgs was so
important requires significant background, covering topics ranging from
electroweak symmetry breaking to the dynamics of proton scattering,
quantum loops in Feynman diagrams, particle detector experiments, and
statistical analyses, among others. Therefore, in some sense, there simply
isn’t space in a modern particle physics textbook to describe every major
result since the 1920s. By the end of the course a student should be able to
understand almost any plot produced by the experiments at the LHC.

This book was born out of the particle physics class at Reed College,
which I taught during the spring semester of 2017. The twin goals of this
textbook are to be up-to-date and to build concepts from the ground up, based
firmly on physical intuition. This book provides an intuitive explanation for
the physics being introduced. This is necessarily an ahistorical approach,
which has consequences for how topics are introduced and motivated as
compared to other textbooks. With a modern viewpoint, we can identify past
results and predictions that had an outsized impact on the field as a whole.
For example, interpreting results at the LHC requires use of proton collision
simulations, referred to as parton shower programs. The physical basis for the
parton shower is the DGLAP splitting functions, which were developed in the
1970s as a consequence of QCD. Thus it is vital for interpretation of results
from the LHC to understand and appreciate the DGLAP splitting functions.
Chapter 9 covers this topic.

A potential drawback of this approach is that it is not encyclopedic. Any
undergraduate textbook on particle physics suffers from this, however. A full
mathematical treatment of particle physics requires quantum field theory,
which is (at least) a year-long graduate-level course. So, there will be some
things for which the motivation is less than ideal. The most prominent of
these is the construction and calculation of Feynman diagrams, which are
motivated in this book in analogy to circuit diagrams, but their mathematical
justification lies well beyond such a course. Similarly, to understand all of the
intricacies of experimental measurements requires years of actually working
on the experiments. Only then can you understand where the systematic
uncertainties come from, the limitations of your detector, and all of the blood,
sweat, and tears that went into a measurement, which is sometimes just a
single number.



Overview of This Book
This textbook is organized into three broad themes:

The Tools of Particle Physics
The Strong Force
The Weak Force.

I don’t claim to have invented this organization; at least two other modern
particle physics textbooks use a similar organizational scheme. However, I do
think that this is the correct approach for such a course. Of the four
fundamental forces, three are relevant for particle physics (strong, weak,
electromagnetism), and of those three, the strong and weak forces have no
long-distance classical counterpart. So, it is natural, then, to focus on them,
especially because their phenomena dominate the description of the physics
probed at the LHC.

The Tools of Particle Physics
The first five chapters cover the tools of particle physics and are material that
I think is required in such a course. Chapter 1 sets the stage, introducing the
Standard Model of Particle Physics and the LHC to frame the content of the
rest of the book. Additionally, just like at the beginning of an introductory
physics course, appropriate units to describe particle physics phenomena are
introduced. Chapter 2 is a review of special relativity and relativistic wave
equations from a Lagrangian viewpoint. The Lorentz invariance of the wave
equations is verified mathematically, as well as understood physically, by
demonstrating that total angular momentum of the Klein–Gordon and Dirac
Lagrangians is 0. Perhaps the fundamental guiding principle of particle
physics is Noether’s theorem, which provides the connection of group
symmetries and conservation laws. Chapter 3 introduces groups and their
importance in particle physics, starting from identification of the symmetries
of an equilateral triangle. This chapter also motivates Hermitian operators in
quantum mechanics from probability conservation and the way this
framework enables a concrete definition of what a “particle” is. Fermi’s



Golden Rule and Feynman diagrams are introduced in Chapter 4. While this
chapter will provide enough detail for students to perform calculations of
Feynman diagrams and construct cross sections, my goal here is to de-
emphasize Feynman diagrams somewhat, as compared to some other
textbooks. Feynman diagrams are particle physics, but particle physics is
much more than just Feynman diagrams. Chapter 5 introduces the LHC and
its two largest experiments, ATLAS and CMS. Detailed discussions of proton
acceleration, proton collision, detector components, and statistics are
provided to present students with the tools to understand experimental results.
Similar topics are not often covered in other books.

The Strong Force
Chapters 6 through 9 cover the phenomena of the strong force, QCD. Chapter
6 is the introduction to QCD, where electron–positron collisions are studied
in detail. This chapter begins with a detailed study of e+e− → μ+μ− scattering
within quantum electrodynamics (QED). This provides a framework for
discussion of the importance of inclusive cross sections and evidence for both
the three colors of QCD as well as the spin-1/2 nature of quarks. With
evidence for quarks established, Chapter 7 introduces partons and Bjorken
scaling as evidence for point-like, nearly free constituents of the proton. A
detailed interpretation of Bjorken scaling is provided by Fourier transforming
to position space, where its consequences become clear. This chapter also
discusses evidence for the gluon from three-jet events, in analogy to photon
emission in QED. These pieces then set the stage for Chapter 8 in which the
three colors of QCD, the spin-1 gluon, and the spin-1/2 quarks are put
together in a consistent theoretical framework. Physical arguments are
provided to augment the geometrical construction of QCD and non-Abelian
gauge theories in general. This chapter also surveys some of the more non-
trivial consequences of QCD, of which the most profound is the property of
asymptotic freedom. The discussion of QCD ends in Chapter 9 with its most
shocking prediction: the formation of high-energy, collimated streams of
particles called jets. The prediction of jets is guided by the observation that
QCD at high energies is approximately scale invariant, which has
consequences for parton evolution manifested in the DGLAP equations. Very
uniquely, this chapter also has a simple, explicit, all-orders prediction of jet
structure for an observable in electron–positron collisions called thrust.



The Weak Force
The final third of the book, Chapters 10 through 14, is devoted to the weak
force. Chapter 10 invites the reader to study this force with the observation of
parity violation in nuclear decays, from detailed discussions of the Wu
experiment and its motivation. The V − A theory is introduced as a
phenomenological model of parity violation and the decay rate of the muon is
calculated. Numerous idiosyncrasies of this parity-violating interaction are
mentioned in Chapter 11. These motivate spontaneous symmetry breaking
and the Higgs mechanism, which is introduced by analogy with similar
situations in quantum mechanics. By connecting electromagnetism with
charged and neutral currents observed in electron–positron scattering, we are
able to construct the electroweak theory and its pattern of symmetry breaking.
Consequences of the weak force for properties of the fermions of the
Standard Model is the topic of Chapter 12. The mechanism of flavor mixing
and CP violation in the quark sector is provided in detail and motivated by
non-commutation of mass and flavor operators. Neutrino oscillation is also
introduced, but no apology is made for imprecision of the calculation. When
and why neutrinos oscillate was only relatively recently clearly elucidated
and involves ideas of entanglement, interference, and decoherence. Chapter
13 is the culmination of the book with the discovery of the Higgs boson. This
is also one of the few places in this book where a historical organization is
presented, with the method of discovery of the Higgs motivated from
searches at the Large Electron–Positron Collider (LEP), to early searches at
Tevatron and LHC, and finally to its discovery in 2012. A review of the
current established properties of the Higgs closes the chapter. As with any
book on particle physics, the final chapter, Chapter 14, looks forward to the
open questions and where the field will go in the future.

Key Features

Worked Examples and Supplementary Appendices
Along with the intuitive discussion of topics, each chapter contains worked
examples focused around understanding a relevant measurement. There is
really nothing as satisfying in physics as seeing a prediction which started
from some very simple assumptions validated by concrete data. The goal of
the worked examples is both to show the student the application of these



ideas and to share the excitement of working in the field of particle physics,
where experiment and theory are so closely connected. Additionally,
appendices provide background or summary information as a quick and easy
reference for students. The appendices cover a background of quantum
mechanics (likely from a perspective students haven’t seen), details about
Dirac δ-functions, Fourier transforms, a collection of results from the main
body of the text, and a bibliography of suggested reading for delving further.
Key particle physics terms are emphasized in bold throughout the text, and a
glossary of a substantial number of the terms is also provided, as significant
jargon is used in particle physics.

Exercises on Recent Results
The exercises at the end of each chapter cover a broad range of applications
to test the student’s understanding of the topic of the particular chapter. Most
of the exercises are relatively standard calculations for the student, but two or
three of the exercises are in much more depth and involve studying data from
experiment in the context of the material of the chapter. This broadens and
deepens the topics covered in the worked examples, and exposes students to
relevant experiments and results that couldn’t be covered within the main
text. Examples of these exercises include analyzing dark matter mass and
interaction rate bounds, estimating the mass of the top quark from its decay
products, studying LHC event displays, a simple extraction of quark parton
distribution functions from data for the Z boson rapidity, lowest-order
predictions for jet masses at the LHC, predicting neutrino scattering rates in
the IceCube experiment, validating the left-handed nature of the top quark
decay, and estimating backgrounds in searches for the Higgs boson decay.
Additionally, the final exercise in each chapter is the statement of an open
problem in particle physics, intended to expose the student to some of the big
questions of the field.

Historical Profiles
It is sometimes easy to forget that physics is a human endeavor done by
people. I have included historical profiles throughout the text to provide
context and a bit of humanity to the topic. I have highlighted scientists who
contributed significantly to the subject at hand, but have attempted to focus
on those people who haven’t been overly deified (e.g., not Fermi or
Feynman). Historical profiles include mini-biographies of Emmy Noether (p.



16), Paul Dirac (p. 34), Fabiola Gianotti (p. 127), Mary Gaillard and Sau Lan
Wu (p. 188), Gerardus’t Hooft (p. 235), Guido Altarelli (p. 258), Chien-
Shiung Wu (p. 291), Helen Quinn (p. 367), and Benjamin Lee (p. 407). A
few “legendary” particle physics stories are presented, including the
etymology of the barn unit of cross section (p. 81), the origin of penguin
diagrams (p. 337), and the Higgs boson discovery announcement (p. 417).

Extensive In-Text Referencing
I have also worked to provide extensive (and where possible, exhaustive)
references to the original literature for every topic covered in this book.
References are provided as footnotes, so that one can immediately identify
the paper without flipping back and forth to the end of the chapter or end of
the book. I have also collected all in-text references in the bibliography for
ease of searching. The only way that the referencing could be as thorough as
it is is through innumerable searches of my own on InSpire
(http://inspirehep.net) and arXiv (http://arxiv.org). InSpire is an
online database of essentially every publication relevant to particle physics in
history. The reference format used in this book is that provided by InSpire,
which is ubiquitous in technical papers on particle physics. arXiv is the
preprint archive for particle physics (and now many more fields), where
scientists post their completed papers before journal publication. It enables
the rapid transmission of ideas, and every paper on particle physics written in
the past 25 years is available there for free.

How to Use this Book
My class at Reed College had about 24 students in it with roughly an equal
mix of juniors and seniors (third- and fourth-year undergraduates). This was
an interesting challenge for a subject like particle physics: the seniors had
completed classes on electromagnetism and quantum mechanics, while the
juniors were taking quantum mechanics concurrently. This required a shift in
the presentation of the material focusing on analogies and physical intuition,
hence the motivation for this book. The level of the course seemed to strike a
happy medium in which both sets of students were satisfied with the level of
the lectures. That said, I do feel that a course on particle physics requires
students to have completed at least a first semester of electromagnetism and a
sophomore-level (second-year) modern physics course. Not having previous

http://inspirehep.net
http://arxiv.org


exposure to quantum mechanics or classical field theory severely restricts the
breadth of topics that can be covered.

In the semester-long course of 26 80-minute lectures, I succeeded in
introducing most of the topics covered in this book. However, that isn’t to say
that much time was spent on them. For example, the treatment of neutrino
oscillations in class consisted of a single lecture, and most of that time was
used to perform the standard two-state interference calculation. To
completely and honestly motivate the reason for neutrino oscillation would
require at least one more lecture on the topic, which may not be possible
depending on time constraints and interests of the instructor. Nevertheless, I
do think that topics covered in every chapter of this book could fill a course,
regardless of the time available.

That said, some topics are more important than others. As mentioned
earlier, I see the first five chapters of this book as required. Units, special
relativity, group theory, Feynman diagrams, and experimental techniques are
fundamental to being able to speak the language of particle physics. A
substantial number of experimental measurements are provided in these first
chapters so that, even if the course does not cover much more, students would
see modern results. For a course with limited time, a number of topics in the
strong and weak force sections could be skipped. For the strong force, I view
Chapter 6, Chapter 7 through the beginning of Section 7.3, and the
consequences of QCD discussed in Section 8.3 as required. If there’s a bit
more time in the course, then covering one of the parton evolution or jets
topics in Chapter 9 would add significant content. For the weak force, I view
Chapter 10, the first half of Chapter 11, and Section 13.2 as required. With a
bit more time, a course could cover one of the topics of Chapter 12 (quark
mixing or neutrino oscillations), or add more details about the Higgs boson
discovery in Chapter 13.

Finally, I have attempted to keep the prose light and the enthusiasm high
because, after all, this is physics and it should be fun. I hope students can
enjoy reading this book and gain an appreciation for this beautiful subject.
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1

Introduction

Particle physics is the study of the fundamental principles of Nature. Within
the purview of particle physics are some of the deepest questions we can ask,
like “What is responsible for mass?” or “Why are there three spatial and one
time dimensions?” These are such big questions that no individual or even
individual country can hope to answer them alone. Contemporary particle
physics is truly an international endeavor, with scientists from nearly every
country on Earth involved in the major experiments. Today’s particle
physicist may regularly travel to conferences in Argentina, visit collaborators
in Japan, watch a live news conference about a major discovery from
Switzerland, or even collect data at the South Pole. It is also a dynamic field,
with numerous new results in particle physics published every week testing
those theories that we have or suggesting new ones. The liveliness and brisk
rate at which ideas are transferred in this field is largely due to particle
physics having one of the largest and most widely used preprint article
servers in all of science. These reasons also make taking a course on particle
physics attractive to many physics students.

All of the machinery, formalism, insight, and tools that you have gained as
a physics student is essential for studying particle physics. This involves the
whole range of advanced physics courses:

Classical Mechanics. Lagrangians and Hamiltonians are the principle
way in which we express a system in particle physics.
Special Relativity. The particles we explore are traveling at or near the
speed of light, c.
Quantum Mechanics. The particles and physical systems we
investigate are extremely small, so the fundamental quanta of action, ħ,
is necessary in our analysis.
Statistical Mechanics. Particles are classified by their intrinsic spin,
which defines them as fermions or bosons.



Electromagnetism. Likely electromagnetism, through Maxwell’s
equations, is the first field theory that you encounter in physics courses.

The language of particle physics is mathematics. From complex analysis to
Fourier transforms, group theory and representation theory, linear algebra,
distribution theory, and statistics myriad fields of mathematics are vital to
articulate the principles, theories, and data of particle physics. As we will see
in this book, the physics is extremely helpful in guiding the mathematical
expressions. The goal of this book is to use the intuition gained through other
physics courses and apply it to particle physics, which gets us a long way
toward understanding, without just blindly following the mathematics.

The particle physics introduced in this book is also the gateway to quantum
field theory, the result of the harmonious marriage of quantum mechanics and
special relativity. A complete treatment of quantum field theory is beyond the
scope of this book, but we will see glimpses of a richer underlying structure
as the book progresses. In particular, quantum field theory is the framework
in which three of the four fundamental forces of Nature are formulated. The
three forces are electromagnetism, the strong force, and the weak force. The
strong and weak forces are the focus of most of this book, with aspects of
electromagnetism studied throughout. Quantum field theory enables a
formalism which produces predictions that can be compared to data, and it is
often (and rightfully!) stated that quantum field theory is the most wide-
reaching and precise theory of Nature that exists.

This chapter serves as the overview that invites you to study this rich field.
Our goal is to frame the rest of the book, which necessitates a review of the
forces of Nature, a preview of the Standard Model of Particle Physics, and a
glimpse of the Large Hadron Collider, the currently running and most
superlative particle physics experiment ever. We also need to introduce
natural units to describe particle physics phenomena, and we find that
familiar SI units are woefully inadequate.



1.1 A Brief History of Forces
Interactions between particles can be expressed through the four fundamental
forces. Gravity is the force that was first understood at some analytical level.
Gravity is a universally attractive force that couples to energy and
momentum. By “universally attractive” we mean that two particles are
always attracted to one another through gravity. By “couples” we mean that
the strength of the gravitational force is proportional to the energy of the
particle. For particles with slow velocities with respect to the speed of light,
the energy to which gravity couples is just the mass of the particle. The
strength of the force of gravity, defined by either Newton’s universal law of
gravitation or general relativity, is quantified by Newton’s constant, GN. For
example, in Newton’s theory, the force of gravity between two masses m1
and m2 separated by distance  is

(1.1)

where r̂ is a unit vector in the direction of  We say that GN is the “strength
of coupling” of gravity, or “coupling constant” for short. If GN is larger, the
force is larger; if GN is smaller, the force is smaller. In SI units, the value of
GN is

(1.2)

It turns out that, in appropriate units that we will discuss further later in this
chapter, GN is incredibly tiny. Gravitational forces are completely ignorable
for any microscopic experiment involving individual particles, like electrons
or protons.

The next force that was understood is electromagnetism. Unlike gravity,
which is universally attractive because mass is always positive,
electromagnetism can be either attractive or repulsive (or neutral). Particles
or other objects can have positive, negative, or no charge and the relative sign



of charges determines whether the force is attractive or repulsive. The electric
force between two charges q1 and q2 separated by distance ⃗r is

(1.3)

Here, the factor of (4πϵ0)−1 is the coupling constant of electromagnetism. The
value of ϵ0 in SI units is

(1.4)

where F is the SI unit of the farad. In appropriate units to enable comparison,
this is billions and billions of times larger than the coupling of gravity, GN.
Electricity and magnetism are intimately related as an electric field in one
reference frame produces a magnetic field in another reference frame. This is
also the starting point for special relativity, which we’ll review in Chapter 2.

This was the story at the end of the nineteenth century. Knowing the mass
and charge of an object is sufficient to determine how it will interact with any
other object, assuming that the only forces are gravity and electromagnetism.
This is also the point where this book begins, at the beginning of the
twentieth century. At this time, physics was undergoing huge revolutions: in
addition to the formulation of the modern pillars of relativity and quantum
mechanics, the electron was recently discovered, as was the nuclear structure
of the atom, and even odder things like superconductivity. A nineteenth
century physicist was completely powerless to address these phenomena and
understand them. They are not described strictly within the paradigm of
Newtonian gravity and Maxwellian electromagnetism.

Throughout the twentieth century, more and more particles and
interactions were discovered: the positron, the anti-particle of the electron;
neutrinos, very light cousins to the electron that are electrically neutral and
seem to pass through nearly everything; the muon, similar to the electron but
more massive; and so on. Near the end of the 1960s, hundreds of new
particles had been discovered and their properties (like mass, charge, and
intrinsic spin) measured. It was looking like quite a mess, with no clear
organizing principle. However, in the late 1960s through the late 1970s,
heroic efforts from theoretical and experimental physicists around the world



yielded a simple underlying framework that could explain all experimental
results. It became known as the Standard Model of Particle Physics.



1.2 The Standard Model of Particle Physics
The Standard Model consists of all but one of the fundamental particles and
forces that are important in our experiments. It provides an organizing
principle for how to construct more complicated objects from these basic
building blocks. A fundamental particle is one which we believe is truly
elementary: it has no spatial extent (it is a point) and is not made up of any
more fundamental parts. For example, hydrogen is not fundamental because
it consists of a proton and an electron, while it is believed that the electron is
fundamental. In this book, we will study the theoretical predictions and
experimental justification of the Standard Model.

The particles of the Standard Model can be artistically arranged and
represented as a series of concentric rings displayed in Fig. 1.1. These 17
particles and their interactions are responsible for almost all observed
phenomena. Their relationship to one another in this figure is indicative of
their intrinsic properties and interactions. Gravity and its force-carrying
particle, the graviton, is the one conspicuously absent force. There are four
major areas of the Standard Model represented by the different regions in Fig.
1.1:

the quarks (top outer ring)
the leptons (bottom outer ring)
the force carriers (middle ring)
and the Higgs boson (center).

You have likely heard of many of these particles and their properties before.
Here, we will just briefly introduce them, and we will get to know them all
intimately throughout this book.



Fig. 1.1 Artistic representation of the 17 Standard Model particles. The top outer ring are the six
quarks, the bottom outer ring are the six leptons, the middle ring are the four force-carrying bosons, and
the center is the Higgs boson. Courtesy of Particle Fever, LLC.

The rings in this representation are indicative of the spin of the particle.
Spin is the intrinsic angular momentum of a particle which we will introduce
in detail in Chapter 3. The quarks and leptons all have half-integer spin and
so are fermions, while the force carriers and Higgs have integer spin and so
are bosons. The Higgs boson H has spin 0 and was predicted in the 1960s but
was only discovered in 2012 at CERN in Switzerland. Of the force carriers,
one is very familiar: the photon γ is the force carrier of electromagnetism. In
addition to electromagnetism, the Standard Model has two other forces: the
strong force (called quantum chromodynamics or QCD) and the weak force.
Unlike electromagnetism or gravity, the strong and weak forces exist only at
very short distances; they have no classical mechanics counterparts. The
force carrier of the strong force is called the gluon g and is responsible for
binding atomic nuclei together. The force carriers of the weak force are the W
and Z bosons. The weak force mediates radioactive decay of unstable
elements, such as uranium.

On the top of the Standard Model rings are the six quarks: up u, down d,
charm c, strange s, top t, and bottom b. They couple to all four forces and
form bound states called hadrons. The two hadrons most relevant to
everyday life are protons and neutrons, which are composed of up and down
quarks. The four other quarks are only produced in high-energy collisions of
particles. The leptons, the bottom of the Standard Model ring, consist of the
electrically charged leptons (electron e, muon μ, and tau τ) and their
electrically neutral cousins, the neutrinos ν. The only lepton you would
encounter during your regular day is the electron, the least massive



electrically charged particle of the Standard Model. You can only produce the
other charged leptons in high-energy collisions, and you’d never know it, but
about ten quadrillion (1016) neutrinos passed right through you while you
read this.

Our focus in this book will be on the strong and weak forces, as they have
no counterpart in classical mechanics. Because of this, they exhibit extremely
weird phenomena that will challenge our abilities to describe them
theoretically. The properties of all of the particles of the Standard Model (like
mass, charge, or spin) and the experimental results that measured them are
collected in the Particle Data Group’s (PDG) Review of Particle Physics.
You can find it online at http://pdg.lbl.gov or you can order the book
yourself from the website (it’s free!).



1.3 The Large Hadron Collider
The largest scientific experiment ever is located outside of Geneva,
Switzerland, accelerates protons to near the speed of light, is a Sagittarius,
and loves international travel. It is the Large Hadron Collider, or LHC.
Figure 1.2 is a bird’s eye view from high over Geneva, looking to the south.
To orient you, Lake Geneva is the slice coming from the left of the photo,
and downtown Geneva is located at its tip. This photo is taken from the Jura
Mountains, and far off in the distance you can see Mont Blanc. The ring of
the LHC is denoted with the oval. This is for illustration; the ring is located
100 meters underground. Also, note the size of the ring. The Geneva airport
is located just to the south and the runway is about 2 miles (3.2 kilometers)
long. This LHC ring is about 18 miles (27 kilometers) in circumference. In it,
two counterrotating beams of protons are accelerated to enormous energies.
Each proton at the LHC has the kinetic energy of a flying mosquito, and a
mosquito has about 1020 protons!



Fig. 1.2 Aerial view of the region near Geneva, Switzerland, with the illustration of the Large Hadron
Collider ring as the large oval. Lake Geneva is the slash from the left, downtown Geneva is located at
the end of Lake Geneva, and Mt. Blanc is visible off in the distance. The main CERN site at Meyrin
and the experiments along the ring are denoted. Credit: CERN © CERN.

To study elementary particles, we use a sophisticated technique that could
be called the “Neanderthal method.” To look inside the accelerated protons,
we smash them together, exploding them apart into a huge number of
particles. Just like a detective at the scene of a car crash, a particle physicist
must reconstruct the moment of proton collision using only the remnants and
debris from the collision. This is indeed a tall order, but also like a detective,
there are guiding principles that can be used to infer what happened. For
example, energy and momentum must be conserved in a collision, and this
greatly restricts how all those particles might have been produced.

As particle detectives, we must collect as much evidence as possible. This
is accomplished with enormous detector experiments that measure nearly all
the particles produced in proton collisions. Figure 1.3 shows a picture of one
of the experiments at the LHC, called ATLAS (A Toroidal LHC ApparatuS).



This is a photo of ATLAS before its construction was completed. We’ll
discuss the particular parts of a particle physics experiment in Chapter 5, but
this figure should illustrate the sizes involved. ATLAS, and its sister
experiment CMS (Compact Muon Solenoid) at the LHC, each are about the
size and weight of a five-story building!

Fig. 1.3 Photo of the ATLAS detector before construction was completed. The large metal tubes
contain the electromagnet that sources its namesake toroidal magnetic field. The interior region is now
filled with detector electronics. Note the person for scale. Credit: CERN © CERN.

For an idea of what happens in the proton collisions, Fig. 1.4 shows an
event display. The proton beams come in from either side of the figure, and
collide in the center. All of the lines emanating from the center correspond to
individual particles produced in the collision. Different parts of the detector
are sensitive to different physics. For example, see the lines at the center of
the figure, called tracks? There’s a magnetic field in that region of the
detector, and so charged particles bend when passing through. The charge of
the particles can be identified by the direction of the bending by using the
right-hand rule. The shaded background of the figure represents the different
detector components. Outside of the region with the tracks is the



calorimetry, which measures the energy of particles. Deposits of particles in
the calorimeters are denoted by the rectangular bars in the figure. At the top
and bottom of the background image is another component called the muon
system which is responsible for detecting muons.

Fig. 1.4 Image of a proton collision event at the ATLAS experiment. The proton beams collide at the
center of the figure, and tracks and calorimeter deposits represent particles detected by the experiment.
Credit: CERN © CERN.



1.4 Units of Particle Physics and Dimensional
Analysis
The first thing we need to do in order to begin studying particle physics is to
establish the appropriate system of units in which to express the outcome of
experimental measurements. Good units should represent the realm in which
they are being used. Because particle physics is the realm of short distances
and high energies, we need to use units that naturally and usefully express
quantities in this domain.

Both relativity and quantum mechanics are necessary to describe particle
physics phenomena. The particles we will consider will be traveling at or
near the speed of light c, and so c will appear in equations everywhere. For
example, the particles we consider satisfy the relativistic energy–momentum
relation,

(1.5)

where E is the energy, m is the mass, and  is the momentum of the particle
of interest. In SI units, c is

(1.6)

so every time we have to use the energy–momentum relationship, we have to
lug around this huge number.

Particle physics is also the realm of quantum mechanics, the description of
Nature at the shortest distances. The fundamental unit in quantum mechanics
is ħ, Planck’s reduced constant, which quantifies units of angular momentum.
It also appears in the Schrödinger equation,

(1.7)

We’ll discuss how to generalize the Schrödinger equation to account for
relativity in Chapter 2, but any time we want to describe quantum



phenomena, we need an ħ. In SI units, ħ is

(1.8)

This is a teensy-tiny number in SI units.
Additionally, the masses or other properties of individual particles are

exceptionally small. In SI units, the mass of the electron is

(1.9)

The mass of the proton, while much larger than the electron, is still minuscule
in SI units:

(1.10)

Even the most massive elementary particle, the top quark, has a mass in SI
units of

(1.11)

Whenever we talk about the electron traveling at relativistic speeds, we need
to keep track of numbers that are spread over about 40 orders of magnitude!
This is inconvenient.

There’s another, philosophical, reason to abandon SI units in particle
physics. We believe, perhaps with a bit of hubris, that particle physics is truly
fundamental. The speed of light as measured by a distant civilization would
be the same as what we have measured on Earth. However, why would they
use SI units? The second is defined as a part of the day, a very Earth-centric
notion, and the meter was originally one ten-millionth the distance from the
North Pole to the Equator. Later, the meter was defined from a platinum-
iridium alloy bar in France, which then depends on the precision to which
such a bar can be machined.

For these reasons and to express the fundamental-ness of particle physics,
we introduce natural units, or “God’s units,” in which we set

(1.12)



Correspondingly, the permittivity and permeability of free space, ϵ0 and μ0,
are also set to 1. Note that the units of ħ and c are

(1.13)

Because we set ħ = c = 1, this defines two relationships between the three
fundamental measurement units of mass, length, and time. Therefore, natural
units can be completely expressed in terms of one unique combination of
mass, length, and time. We take the measurement unit of natural units to be
energy, and everything in natural units can be expressed solely in terms of
energy. The reason to use energy is that it is a conserved quantity, so once the
energy of a system is defined, that fixes intrinsic mass, length, and time
scales for that system.

In particle physics, we typically use the electron volt (eV) as the energy
unit of choice as this is naturally (closer to) the scale at which we work. In SI
units, one electron volt is

(1.14)

One electron volt is the energy that a particle with the fundamental unit of
electric charge e = 1.6 × 10−19 coulombs acquires in an electric potential of 1
volt. For example, let’s see how this works for the electron mass. To express
the electron mass as an energy, we multiply by c2:

(1.15)

The mass of the proton is

(1.16)

For comparison, the LHC collides protons that have kinetic energies of 6.5 ×
1012 eV = 6.5 TeV (tera-eV), almost 7000 times the mass of the proton.

Using natural units, we can turn distances into energies, as well. Recall the
Heisenberg uncertainty principle for momentum Δp and position Δx standard
deviations:



(1.17)

This tells us how to convert to natural units for distances. A distance x has the
same units as ħ/p, which you might also recall as the de Broglie wavelength
divided by 2π. Momentum p can be related to energy via the relativistic
energy–momentum relation

(1.18)

which holds for massless particles. Then, the quantity

(1.19)

is a distance x expressed in natural units. Let’s see how this works in an
example.

Example 1.1 The Bohr radius is the average distance between an electron
and the proton nucleus in the hydrogen atom. What is the Bohr radius
expressed in natural units?

Solution
The Bohr radius a0 in SI units is

(1.20)

Converting to natural units, this is

(1.21)

Note that this corresponding energy is much larger than the magnitude of the
ground state energy of hydrogen, which is 13.6 eV.

Throughout this book, we will employ natural units as they will make
expressions and algebra much easier. From natural units, one can always



uniquely go to any other unit system by restoring the factors of c and ħ. You
just have to remember what the quantity is (a length, time, or mass, for
example).



Exercises
1.1 Energy of a Mosquito. The mass of a mosquito is approximately 2.5 ×

10−6 kg. Estimate the kinetic energy of a flying mosquito and express
it in eV. What is the approximate kinetic energy per nucleon (proton
or neutron) for a mosquito? How does this compare to the energy of
protons at the LHC?

1.2 Yukawa’s Theory. In the 1930s, Hideki Yukawa predicted the
existence of a new particle, now called the pion. It was theorized to
be responsible for binding protons and neutrons together in atomic
nuclei. Based on the size of an atomic nucleus, Yukawa was able to
estimate the mass of the pion.1 Estimate the mass of the pion from the
assumption that the relevant distance scale is the radius of an atomic
nucleus of about 1 femtometer (10−15 meters). Express the mass in
eV.

1.3 Mass of the Photon. The photon, the force carrier of
electromagnetism, is predicted to be massless. We can test this by
observations of electromagnetic phenomena in the universe over
galactic (or extragalactic) distances. One such bound on the mass of
the photon comes from measurements of the Milky Way’s magnetic
field.2 Assuming that the properties of the magnetic field are exactly
as predicted by Maxwell’s equations, estimate an upper bound on the
mass of the photon in eV and kg. How much smaller is this than the
mass of the electron? The diameter of the Milky Way galaxy is
approximately 100,000 light-years.

1.4 Planck Units. In this chapter, we discussed natural units in which we
set ħ = c = 1. Then, we expressed everything in terms of energies. In
1899, after the definition of h, Max Planck defined a set of units now
called Planck units, in which ħ = c = GN = 1, where GN is Newton’s
constant.3 In these units, everything is dimensionless.

(a) How long is 1 unit of Planck time, in seconds?
Hint: Express the Planck time tP as a product of powers of GN,

ħ, and c as



(1.22)

and determine the powers α, β, γ by matching the dimensions on
both sides.

(b) What is 1 unit of Planck mass, in kg and eV? How does this
compare to the mass of the proton? The enormous difference
between the mass of the proton (or any “normal” mass scale of
the Standard Model) and the Planck mass is called the hierarchy
problem.

(c) How much larger is the electric force between a proton and an
electron than the gravitational force?

1.5 Expansion of the Universe. The cosmic microwave background, or
CMB, is remnant electromagnetic radiation from the early universe. It
was discovered by Arno Penzias and Robert Wilson in the 1960s as
background static that they could not explain in their radio telescope
data.4 Before an explanation of it, they thought it might have been
caused by pigeon droppings in the telescope!

(a) The energy of the photons in the CMB is observed to be almost a
perfect blackbody spectrum. As such, we typically reference the
characteristic energy as a temperature, which for the CMB is 2.7
K. What does this correspond to in eV?

Hint: Recall that Boltzmann’s constant is kB = 1.38 × 10−23 J ·
K.

(b) In the early universe, electrons and protons had kinetic energies
that were too large to electrically bind and so formed an opaque
plasma. When the temperature of the universe was cool enough,
they then formed an electrically neutral bound state, called
hydrogen. This period in the history of the universe is called
recombination. From the ground state energy of the bound state
of hydrogen, estimate the temperature at which recombination
occurred.

(c) At the time of recombination, the energy of photons was set by
the recombination temperature. It is these photons that we now



observe as the CMB. Using the results of parts (a) and (b) of this
exercise, estimate the ratio of the wavelength of CMB photons
that we observe now to the wavelength of photons at the time of
recombination. This is called the redshift factor, and is
corroborating evidence that the universe is expanding. The
expansion of the universe stretches distances, including
wavelengths of photons!

Note that this is only a very rough estimate of the redshift
factor; to determine it precisely requires a much more detailed
analysis including the thermodynamics of the recombination of
electrons and protons into hydrogen.5

1.6 Decay Width of the Z boson. Figure 1.5 is the distribution of the
probability that electrons and their anti-particle positrons interacted
and produced hadrons when collided head-on with the corresponding
center-of-mass energy on the horizontal axis. The dots represent the
data points from the DELPHI experiment at the Large Electron–
Positron Collider (LEP). The peak of this distribution at about 91
GeV corresponds to the Z boson. The location of the peak
corresponds to the mass of the Z boson (in natural units). The
characteristic size of this peak is called the decay width of the Z
boson, or just the width. More precisely, the decay width can be
determined by the full width of the distribution at half of the
maximum, measured in GeV.



Fig. 1.5 Center-of-mass energy distribution of electron–positron scattering that produces hadrons from
the DELPHI experiment. Reprinted from Nucl. Phys. B 418, P. Abreu et al. [DELPHI Collaboration],
“Improved measurements of cross-sections and asymmetries at the Z0 resonance,” 403 (1994), with
permission from Elsevier.

(a) Estimate the decay width of the Z boson from this plot. Express
your answer in GeV. Give an estimate to the tenth of a GeV.

(b) The decay width represents a fundamental quantum mechanical
uncertainty on the mass energy of the Z boson. By the energy–
time uncertainty principle, the decay width corresponds to a
finite lifetime of the Z boson. What does this decay width
correspond to, in seconds? This is called the lifetime, which is
approximately the half-life, of the Z boson.

(c) If the decay width of a particle is very small (approaching 0),
what lifetime does that correspond to? What if the decay width
gets very large (approaching ∞)? A particle with a very small
decay width is called stable.

1.7 Decay of Strange Hadrons. Look at Fig. 1.6 of the decay chain of
particles. In this decay chain, an Ω− particle is produced and decays to
π− and Ξ0 particles (which subsequently decay). This is the trace of
data from a bubble chamber, which is a supersaturated chamber of
alcohol vapor. Charged particles that pass through the bubble



chamber seed condensation of the vapor, and can be observed by
trails of condensed alcohol. The flight path of the Ξ0 particle is about
3 cm. Using this, estimate the lifetime of the Ω− particle in seconds
and express this time in eV to determine the decay width.

Fig. 1.6 Trace of the decay chain of the negatively charged kaon K− hadron observed in a bubble
chamber experiment at Brookhaven National Laboratory. The Ω− hadron is observed as a decay
product of the K−. Reprinted figure with permission from V. E. Barnes et al., Phys. Rev. Lett. 12, 204
(1964). Copyright 1964 by the American Physical Society.

1.8 PDG Review. For the following questions, you’ll need to use the
PDG’s Review of Particle Physics, located at http://pdg.lbl.gov.

(a) From the “Particle Listings” section of the PDG, look up the
properties of the proton. What is the lower bound of the mean
lifetime of the proton? This is determined by watching a huge
amount of water for a long time and not observing any protons
decay. Now, assume that the proton’s lifetime is just above this
bound. About how much water would you need in order to
observe one proton decay in one year? Express your answer in



cubic meters.
Hint: On average, the lifetime corresponds to how long an

individual particle exists. How many particles would you need to
ensure that one of them decayed in a year?

(b) The heaviest particles of the Standard Model are the W, Z, and
Higgs bosons, and the top quark. Find the masses of these
particles and determine the atomic elements that are
approximately the same mass as each particle.

(c) From the PDG, what are the masses of various particles that
appear in the decay represented in Fig. 1.6? What is the width of
the Ω− according to the PDG, and how does that compare to your
estimate in Exercise 1.7?

1.9 InSpire and arXiv. Two invaluable tools for searching the particle
physics literature are InSpire (http://inspirehep.net) and the
preprint arXiv (pronounced “archive,” https://arxiv.org). InSpire
is a searchable database of essentially every paper ever written that is
relevant for particle physics. The arXiv updates with new research
papers posted each weekday. It’s a daily task to “check the arXiv” to
see what other people in the field are thinking about.

(a) Go to InSpire and search for Emmy Noether’s papers. The search
field in InSpire is different than a typical search engine. To
search for an author, like Noether, you would enter: “find a
Noether”. The specification “a” denotes author. What is her most
highly cited paper?

(b) You can also search by date on InSpire. Find all papers from
1967. What are the two most highly cited papers from that year?
You can order by citation count using one of the drop-down
menus below the search bar.

(c) Now, go to the arXiv. The arXiv is arranged by subject;
originally when it started in 1991, only theoretical physics papers
were hosted there. Now there is a wide range of physics and non-
physics subjects represented. The most relevant subjects for this
book are High Energy Physics - Phenomenology (hep-ph) and
High Energy Physics - Experiment (hep-ex).



For a few days, look through the new papers in these subjects.
Are there common themes in the papers that are posted? Which
experiments are posting results on arXiv? Are there any papers
with titles or abstracts that seem interesting?

1.10 Research Problem. From Exercise 1.4, we introduced the hierarchy
problem as the enormous difference between the Planck mass and,
say, the mass of the proton. Why is there such a difference? Why is
gravity so weak?
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2

Special Relativity

The review of special relativity for this book will be very practical: we won’t
think about shining a light on a train or falling in an elevator. We will, on the
other hand, emphasize the importance of symmetries in particle physics as a
guiding principle. In any field of physics, how something works is
straightforward and requires just measuring appropriate quantities. For
example, how two blocks collided just requires measuring their initial and
final velocities. Why the blocks collided in the manner that they did is much
more interesting and explains the mechanism of their collision; i.e., what
laws of Nature govern their collision. In this case, we know what laws govern
their collision: conservation of energy and conservation of momentum. With
these two simple principles, we can uniquely predict what will happen when
any two blocks collide.

The connection between conservation laws and symmetries is provided by
Noether’s theorem. You are likely familiar with consequences of Noether’s
theorem. For example, to ensure conservation of angular momentum of a
system, we can express every relevant quantity as vector dot products, which
are invariant to rotations. We use this analogy to form relativistic vectors and
dot products that enable us to construct Lorentz-invariant quantities. When
analyzing a system, it is best to work with Lorentz-invariant quantities as
much as possible, as they can be evaluated in any reference frame of
convenience.

Additionally, we want to describe dynamical relativistic systems, i.e.,
systems that change in time. We construct equations of motion analogous to
the Schrödinger equation of non-relativistic quantum mechanics. While there
are many similarities with the Schrödinger equation, we find multiple
relativistic equations that are distinguished by the spin of particle that they
describe. As discussed in the Introduction, the Standard Model consists of
bosons with spin 0 and 1, and fermions with spin 1/2. The spin-1 equation of
motion is very familiar as it is just Maxwell’s equations of electromagnetism



written in an explicitly Lorentz-invariant form. The spin-0 and spin-1/2
equations of motion are new and will introduce a number of features for
which we will develop a physical intuition.



2.1 Symmetries and Their Consequences
The goal of particle physics is to explain what happens at the shortest
distance scales. Explanation is provided by conservation laws that highly
restrict the possible outcomes of an experiment. To proceed, we then need
two things: we need to identify the conservation laws of particle physics and
we need to determine how those conservation laws restrict the possible
physics. Determining the conservation laws can be done experimentally. We
can measure quantities before and after particles interact to identify what
remains the same. Determining how those conservation laws restrict physics
is much more subtle and exciting. So, how do we do it?

Box 2.1 Historical Profile: Emmy Noether

Emmy Noether, in addition to her theorem, made fundamental
contributions to abstract algebra and the calculus of variations. Noether
faced significant obstacles as a woman mathematician, including not being
paid for teaching or research for many years while at the university in
Göttingen, Germany. When she was formally forbidden from teaching, she
found an ally in David Hilbert, who would sign up to teach a course in
which Noether would actually lecture. She was aware of how she was able
to succeed nevertheless, as she wrote in a letter to fellow mathematician
Helmut Hasse:1

My methods are really methods of working and thinking; this is why
they have crept in everywhere anonymously.

It was in Göttingen that she proved her famous theorem. However, her
time there was short-lived because of the rise of the National Socialist
party in the 1930s. Noether, who was Jewish, was expelled from Göttingen
and relocated to Bryn Mawr College in Pennsylvania. She died in 1935.

How conservation laws restrict physics is so important it is elevated to a
theorem in physics, and is possibly the most important and general result in
all of theoretical physics. It is called Noether’s theorem,2 after Emmy



Noether, a German mathematician. Using the Lagrangian formulation of
classical mechanics, Noether proved that a symmetry of the Lagrangian has a
corresponding conservation law. A symmetry is a transformation that can be
performed on a system that leaves its physical description unchanged. The
mathematical language of symmetries is group theory, and Chapter 3 is
devoted to exploiting group theory in particle physics.

Examples of symmetries and their corresponding conservation laws from
Noether’s theorem include:

energy conservation from time translation invariance
momentum conservation from spatial translation invariance
angular momentum from rotational invariance
charge conservation from phase invariance of charge density.

The power of Noether’s theorem is in the way it restricts the possible
description of a system. Given a set of conservation laws determined
empirically, we can write down the Lagrangian of the system simply by
demanding that it satisfies the appropriate symmetries. We’ll review
Lagrangians for relativistic systems later in this chapter. Now, let’s develop
an understanding for how symmetries are constraining and review relativistic
kinematics.

Let’s see how we can use the consequences of Noether’s theorem in our
formulation of special relativity and its utility for particle physics. Before we
work with special relativity, let’s work with the more familiar example of
vectors in three dimensions. Let’s say we want to describe the physics of a
system in which angular momentum is conserved. As mentioned above,
angular momentum conservation corresponds to invariance of the system
under rotations. For example, we might be considering a particle in a central
potential, like an electron orbiting a proton because of electromagnetism.
Positions and velocities of the particles are represented by vectors  and 
respectively. If angular momentum is conserved, then how are these vectors
allowed to appear in the calculation of properties of the system? That is, what
function of the vectors is consistent with rotational invariance?

2.1.1 Rotational Invariance
To understand this, let’s be concrete and consider two two-dimensional



vectors  and  To understand rotational invariance we need to figure out
how they transform under a rotation. A rotation is a linear operation; that is,
it can be represented as a matrix M acting on the vector:

(2.1)

where

(2.2)

with θ as the angle of rotation. The rotation changes the vector  and so the
vector is not invariant to rotations. However, note that the rotation of the
transpose of the vector is

(2.3)

where

(2.4)

Then, the rotation matrix times its transpose is the identity matrix I:

(2.5)

This then tells us that the quantity  is invariant or unchanged under a
rotation. That is, under a rotation implemented by the matrix 
transforms to

(2.6)

Therefore, for angular momentum to be conserved, the system must be
described by quantities like  Of course, this is nothing more than the dot
product:

(2.7)



where we use the summation notation over the elements of the vectors. This
can be equivalently written as

(2.8)

Here, δij is the Kronecker-δ, where

(2.9)

This may seem a bit tautological, but now consider the rotation of this
expression:

(2.10)

There are a couple of things we did to write this. Mij is the component of the
matrix M in the ith row and jth column. On the right, we use the Einstein
summation notation in which repeated indices are summed over. That is,

(2.11)

which implements the rotation on the lth component of the vector  Note that
the dot product is invariant to rotations for general vectors  and  if and
only if

(2.12)

However, this is nothing more than the (i, j)th entry of the matrix

(2.13)

by the form of the rotation matrix. Therefore, an equivalent way to define the



rotation matrix is as the set of all matrices that leave the identity matrix
invariant:

(2.14)

This is what we mean by invariance under rotations: vectors are combined
with the Kronecker-δ/dot product, and rotation matrices do not change this.

We’ll dive into much more detail about rotation matrices and their
mathematical structure as a group in Chapter 3, but note a few things at this
stage. Because we haven’t restricted the size of the matrices in Eq. 2.14, this
actually defines a rotation matrix in any dimension D. We aren’t restricted to
D = 2, where our analysis started. The set of all matrices of dimension D that
satisfy Eq. 2.14 is called the orthogonal group in dimension D, denoted as
O(D). The result of Eq. 2.14 and generalization of it will be helpful in
working in special relativity. If we want to describe a system in which
relativistic energy, momentum, and angular momentum are conserved, then,
just as for rotations, we want to identify vectors and take dot products
appropriately.

2.1.2 Relativistic Invariance
Starting from the relativistic conservation laws, we expect that we are able to
construct vectors and the notion of a dot product. The relativistic energy–
momentum relationship is

(2.15)

On the right, we have rearranged the expression so that both sides of the
equation are Lorentz invariant.  looks like a kind of dot product with
a kind of vector. If we define a four-vector

(2.16)

then  is Lorentz invariant. This defines the four-vector
dot product.

As with a familiar space-vector or “three-vector,” we can represent the
four-vector dot product as matrix multiplication. We will denote individual



elements of a four-vector with Greek indices, as pμ or pμ, which is the μth
element of p. Then, the four-vector dot product can be expressed as

(2.17)

Here, we use the standard notation that p0 = E and p1 = px, p2 = py, p3 = pz.
We also employ the Einstein summation notation, where repeated indices are
summed over. The matrix ημν implements the dot product for four-vectors:

(2.18)

On this matrix expression, we have included the indices μν superscript. ημν is
a single entry of the matrix η, and indices on the matrix object means that we
are considering just the entry μν, though we leave which particular entry
undetermined. We can use η to change upper to lower indices as

(2.19)

via matrix multiplication.
So what did we gain from this? If we want to preserve relativistic energy,

momentum, and angular momentum, then we should express the physical
system in terms of four-vector dot products, as they are Lorentz invariant.
Just like rotations, Lorentz transformations are linear transformations and
so are implemented by a matrix Λ on a four-vector as

(2.20)

using Einstein summation notation. If we demand that the four-vector dot
product of two four-vectors p and q is Lorentz invariant, we have

(2.21)

That is, just by relabeling indices



(2.22)

for any four-vectors p and q. Therefore, a Lorentz transformation
implemented by a matrix Λ leaves η invariant:

(2.23)

The set of matrices Λ that satisfy this constraint are called O(3,1). Also, we
will often call η the “flat-space” or Minkowski metric, or typically just the
metric. Let’s see how these Lorentz transformations work in a couple of
examples.

Example 2.1 One type of Lorentz transformation is just a rotation about a
fixed axis. Let’s consider a rotation about the ˆx-axis by an angle θ. What is
the matrix Λ that implements this rotation on a four-vector?

Solution

Let’s first identify the rotation acting on the (three-)momentum vector  This
rotation is implemented by a matrix M, where

(2.24)

The energy depends only on the magnitude of the momentum, and so
remains unchanged under a rotation. Therefore, the matrix Λ that implements
a rotation on the four-vector p is

The rotation can also be implemented by acting from the right as

(2.26)



Note that the matrix Λ does indeed satisfy

and so is a Lorentz transformation.

Example 2.2 Let’s now consider a different type of Lorentz transformation: a
boost. A Lorentz boost is a change of inertial reference frame implemented
by moving with a relative velocity. Let’s consider boosting along the ẑ-axis
by changing the relative velocity of the inertial frame by a velocity  In
natural units, the speed β is a fraction of the speed of light c, and so −1 < β <
1 (negative because we could boost in the opposite direction). |β| = 1 means
that the boost is by the speed of light c, which of course isn’t possible. What
is the matrix Λ that implements this boost?

Solution

Boosting along the ẑ-axis means that px and py are unchanged by the boost:

(2.28)

while the energy E and pz change. Under this boost, the energy becomes

(2.29)

where γ is called the boost factor and is

(2.30)



(In SI units, this would be  where v is the velocity of the
boost.)

The z-component of the momentum transforms as

(2.31)

Note that both of these transformations are linear: they are represented by a
linear combination of energy E and momentum pz. This can therefore be
implemented by a matrix Λ acting on the four-vector p. Acting from the left,
we have

(2.32)

Acting instead from the right, we have

(2.33)

In Exercise 2.1, you will show that the matrix Λ does satisfy the constraint
that all Lorentz transformations must satisfy:

(2.34)

2.1.3 Applying Relativity
A very common problem that we want to analyze in particle physics is the
decay of an unstable particle. The vast majority of particles decay to two or
more particles. The only particles for which there is no evidence that they



decay are electrons and protons. The pion, for example, a particle composed
of up and down quarks, decays to two photons. The pion has a mass of about
135 MeV and in its decay to photons energy and momentum are conserved.
For now, we won’t worry about the consequences of angular momentum
conservation. How can we understand this decay using four-vectors?

Of course, four-vectors depend on the frame in which they are evaluated,
so we need to pick a frame to analyze this decay. The pion is massive so we
can always boost to the frame where the pion is at rest. In this frame, its
momentum four-vector, or four-momentum, is

(2.35)

That is, when the pion is at rest, its energy is just set by the pion mass, mπ.
Now, we want to determine the four-momentum of the two photons in the
pion decay. We can again perform a rotation (= Lorentz transformation) to
have the photons travel along the ẑ-axis. By momentum conservation, the
photons must be traveling back-to-back from the pion decay:

In this frame, we can express the four-vectors of the two photons as

(2.36)

By energy and momentum conservation the sum of the four-vectors of the
photons must add up to the pion’s four-momentum:

(2.37)

This is actually a system of four equations, two of which are just 0 = 0. The
non-trivial equations are conservation of energy and conservation of the z-
component of momentum:

(2.38)

Denoting  and  the four-vectors of the photons are then

(2.39)



Photons are massless particles and so the dot product of a photon’s four-
momentum with itself must be 0. Enforcing this for both of the decay product
photons, we have

(2.40)

It then follows that E = pz and E = mπ/2. Then, the four-vectors of the photons
are

(2.41)

Note that the four-vectors we have found satisfy

(2.42)

We will refer to a four-vector for which p2 = m2, as for the pion four-
momentum pπ, as “on the mass shell” or just on-shell for short. This
terminology derives from the fact that the energy–momentum relationship in
relativity defines a hyperbolic curve:

(2.43)

The closest approach of this curve to the origin is when  where E = m.
The asymptotes of this hyperbolic curve correspond to the lines 
which are only reached in the limit of infinite momentum.

To find the four-vector in any other frame, we just Lorentz transform
appropriately. While we just considered the case when the decay products are
massless, one can also consider the case when the decay products are
massive, which adds some complication. The following example will
demonstrate the power of working with Lorentz-invariant quantities.

Example 2.3 In the 1960s, Kenneth Greisen, Vadim Kuzmin, and Georgiy
Zatsepin predicted that through interactions with the cosmic microwave
background (CMB), extragalactic cosmic rays would have an upper bound to
their energy.3 They proposed that cosmic rays (high-energy protons) would
lose energy in interacting with the CMB photons by producing a neutral pion:



(2.44)

The proton energy at which this process can occur is called the GZK cutoff.
In this example, we will analyze this reaction and estimate the GZK cutoff
energy.

The simplest way to analyze this reaction is to express the reaction
exclusively in Lorentz-invariant four-vector dot products. The sum of the
initial momentum four-vectors must be equal to the sum of the final four-
vectors, which will greatly simplify the analysis. Let pp and pγ be the initial
proton and CMB photon four-vectors, and  and pπ be the final proton and
pion four-vectors.

Solution

By conservation of energy and momentum, we must have

(2.45)

Because both sides of this equation are Lorentz invariant, we can evaluate
them in any frame. Let’s then compute  in the frame in which the
proton and pion are both at rest, which corresponds to the minimum energy at
which this process could occur. In that case, the four-vectors are just

(2.46)

where mp and mπ are the masses of the proton and pion, respectively. The
square of their sum is then

(2.47)

Masses are Lorentz invariant, so indeed this expression is independent of
frame.

Now, let’s evaluate the other side of the momentum-conservation equation,
Eq. 2.45. We can expand

(2.48)

where we note that the photon is massless. Then, we have to evaluate the dot



product pp·pγ. To do this, we can work in the frame in which the proton and
CMB photon collide head-on. The energy of the proton will be enormously
larger than the mass of the proton, so we can safely approximate the proton as
massless in evaluating pp · pγ. With these assumptions, the four-vectors are

(2.49)

Here, Ep is the energy of the proton and ECMB is the energy of the CMB
photon. Colliding head-on means that their three-momenta are in opposite
directions, and we choose to align them along the ẑ-axis. Their four-vector
dot product is thus

(2.50)

Now, we just need to assemble the pieces and solve for Ep in Eq. 2.45. We
then find that

(2.51)

The masses of the proton and pion are mp = 938 MeV and mπ = 135 MeV,
respectively, while the energy of CMB photons is approximately ECMB ≃ 3 ×
10−4 eV (which follows from the CMB temperature of about 2.7 K). The
proton energy in this process is

(2.52)

30 J is a huge amount of energy! That’s approximately the same amount of
energy as a baseball traveling at 50 miles per hour (23 meters per second).
Extragalactic protons above this energy can lose energy by interaction with
the CMB. Because the CMB exists throughout the visible universe, this
suggests that there cannot be protons with energies larger than this value,
hence the name “GZK cutoff.”

Figure 2.1 shows the distribution of cosmic ray energies from numerous
experiments, tabulated in the PDG. The horizontal axis is the energy of
cosmic rays in eV, and the vertical axis is a measure of the number of cosmic



rays with that energy. The labeled “Knee,” “2nd Knee,” and “Ankle” are
features in the distribution that correspond to different astrophysical sources
of cosmic rays.

Fig. 2.1 Observed energy distribution of cosmic rays (extragalactic protons) from various experiments.
The data are determined by measuring the energy of particles from air showers due cosmic rays hitting
the upper atmosphere of Earth. Credit: M. Tanabashi et al. [Particle Data Group], “Review of particle
physics,” Phys. Rev. D 98, 030001 (2018).

Now that we have computed the GZK cutoff energy, let’s compare this to
cosmic ray data. The maximum energy that cosmic rays are recorded on this
plot is at about (or just below) our calculated value of the GZK cutoff. So, it
doesn’t appear that there are any cosmic rays observed with energies above
the GZK cutoff. A more careful analysis (including the thermal nature of the
CMB) actually shows that the GZK cutoff is about 5 × 1019 eV, and so there
have been a few ultra-high-energy cosmic rays observed that violate the GZK
limit! It remains an open problem to explain the source of cosmic rays that
violate the GZK cutoff.



2.2 Relativistic Wave Equations
As particle physics is the realm of both quantum mechanics and special
relativity, we should have (or would expect to have) a wavefunction equation
like the Schrödinger equation that describes the time evolution of a system.
For a brief refresher, a review of quantum mechanics is provided in Appendix
B. The Schrödinger equation for a wavefunction ψ of a particle of mass m in
a potential V is

(2.53)

There are a couple of problems in attempting to use the Schrödinger equation
to describe particle physics. The first and biggest problem is that the
Schrödinger equation represents conservation of non-relativistic energy. To
write the Schrödinger equation, we have identified energy E and momentum 

 with derivatives:

(2.54)

and so the Schrödinger equation represents

(2.55)

which is not invariant to Lorentz transformations. Apparently, the
Schrödinger equation treats space and time differently; there are two spatial
derivatives but only one time derivative in the Schrödinger equation. As a
final point, what is a potential in relativity?

2.2.1 The Klein–Gordon Equation
It appears that, in order to develop quantum mechanics relativistically, we
need to abandon the Schrödinger equation. Just as the Schrödinger equation
encoded non-relativistic energy conservation, we should find a wave equation



that encodes relativistic energy conservation. So, starting from the relativistic
energy–momentum relation (putting back the cs for now)

(2.56)

we replace E and  with the canonical quantum mechanical operators:

(2.57)

and let these act on a wavefunction  We then find the Klein–Gordon
equation,4

(2.58)

Because this equation has both c and ħ, it is indeed a relativistic quantum
mechanical wave equation. Going back to natural units, this is

(2.59)

The wavefunction  is also an object called a field because its arguments
extend over all space and time. Another way to say this is that  exists
throughout spacetime and its fluctuations are described by the Klein–Gordon
equation. This is analogous to a field of wheat that fluctuates according to the
movement of the wind.

The Klein–Gordon equation has the solution

(2.60)

where  is the four-vector dot product. To see that this is
indeed a solution, note that

(2.61)

The Klein–Gordon equation implies that



(2.62)

This is indeed true if the four-vector p is on-shell: p2 = m2. Thus we often say
that solutions to the Klein–Gordon equation are on-shell solutions. Note also
that the Klein– Gordon equation is Lorentz invariant. The solution 

 only depends on a four-vector dot product.
There are other interesting features of the Klein–Gordon equation. First, p ·

x has the same dimensions as angular momentum, ħ, and a classical action.
The energy conservation encoded in the Klein–Gordon equation is the
quadratic relationship

(2.63)

There are two solutions to this equation for the energy, differing in their sign:

(2.64)

Another way to say this is that there are two solutions to the Klein–Gordon
equation because it is a second-order differential equation. The existence of
negative-energy solutions is weird, and unfamiliar for free particles from the
Schrödinger equation. This is a recurring feature of relativistic wave
equations, and we will address it carefully in Section 2.2.2.

The Klein–Gordon Lagrangian

The Klein–Gordon equation isn’t the most general way to express the
dynamics of a relativistic wavefunction ϕ. We can express all of the
information encoded in the Klein– Gordon equation and even more as a
Lagrangian. Let’s look back at the Klein–Gordon equation, rewritten in the
suggestive form

(2.65)

This is a second-order (in time) differential equation for a field ϕ. As a field,
ϕ(x) permeates space and time and its configuration must satisfy Eq. 2.65.
Contrast this with a particle: a particle is defined by a position  that is, a
particle is at a unique location  at time t. In classical mechanics, the



equation that governs  would be Newton’s second law,

(2.66)

where  is the potential energy. Equation 2.65 looks just like this, though
for a field. We have the second time derivative piece

(2.67)

which is like acceleration for a particle. Now, look at the right side of Eq.
2.65: ∇2ϕ−m2ϕ. The effective “force” from the mass term,

(2.68)

is just like the restoring force for a harmonic oscillator with spring constant k
= m2. The Laplacian term

(2.69)

is a shear force: if the difference between values of ϕ at nearby spatial points
is large, then effectively there is a large force. This makes some sense: if you
shear a fabric, then there is a force; that is, the fabric becomes warped. This is
illustrated in Fig. 2.2.

Fig. 2.2 Illustration of shear force on a warped fabric. The shear force is largest in the region where the
grid has the highest curvature.



Okay, we now have an intuition for what the Klein–Gordon wave equation
is telling us: it is just Newton’s law for a field that experiences shear forces in
a harmonic oscillator potential. Further exploiting the analogy with Newton’s
law, we can determine the corresponding potential energy density, u(ϕ).
Newton’s second law implies that

(2.70)

The solution u to this differential equation is a potential energy density
(potential energy per unit volume) because the field ϕ(x) itself depends on
location in space. This is a bit different than the case with Newton’s second
law for a particle, Eq. 2.66, where U there is just the potential energy.

Integrating the corresponding force to determine the potential energy
density, we find:

(2.71)

We can safely ignore any constant energy contribution as it can be eliminated
by appropriate relabeling.5 The kinetic energy density k is found from the
generalization of  to fields. This is just

(2.72)

Then, the total energy density of the field at the point  is

(2.73)

The total energy or Hamiltonian H of the field ϕ requires integrating over all
space, i.e., summing over all energy contributions at time t:

(2.74)

The integral extends over all space in the x, y, and z directions. The



integration measure is

(2.75)

We will also often denote this as  Demanding that the Hamiltonian is
independent of time (that is, energy is conserved) requires that the field ϕ
satisfies the Klein–Gordon equation, Eq. 2.65. With this Hamiltonian, we can
formulate the relativistic field equations in a totally different, and ultimately
more useful, way.

The classical mechanics of a point particle can be reformulated with a
Lagrangian and the principle of least action. The Lagrangian L is the
difference between the kinetic and potential energies of a particle with
trajectory  (with unit mass):

(2.76)

The action  is defined as a function of the function of time  or a
functional of the Lagrangian integrated over time:

(2.77)

Newton’s second law is a consequence of the principle of least action:
classical trajectories  are those that minimize the action. Minimizing the
action (taking the
derivative of  with respect to  and setting it to 0), one finds that 
must satisfy

(2.79)

exactly Newton’s second law.
We can formulate the Lagrangian and action for the relativistic field ϕ in

an analogous way. The Lagrangian L is the difference of the total kinetic and
potential energies:

(2.80)



The action is then the time integral of the Lagrangian:

(2.81)

The wave equation that we started with, the Klein–Gordon equation, can be
found by minimizing this action with respect to ϕ(x).

We can massage this into a nice form. We will denote

(2.82)

the Lorentz-invariant integration measure. Further, we can form the four-
vector

(2.83)

from the time and space derivatives. Then, we can nicely express the action
as

(2.84)

This is manifestly Lorentz invariant: all four-vectors are only present in dot
products and so the Lorentz invariance is easy to see by eye. The object

(2.85)

is called the Lagrangian density, or typically (though technically incorrectly)
just the Lagrangian. Given this Lagrangian, we have all of the information of
the wave equation and actually much more!

While this was a long, roundabout way to get there, this now tells us how
to construct, in general, descriptions of relativistic, quantum mechanical
systems. We just need to write down the corresponding Lorentz-invariant



Lagrangian and we are “done.” “Done” is in quotes because much of the rest
of this book will be devoted to attempting to unpackage the information in
the Lagrangian.

Physical Interpretation of the Klein–Gordon Lagrangian

With this Lagrangian in hand, it is useful to pause for a bit and discuss the
physical configuration that it describes. We have discussed the analogy of
this Lagrangian to a harmonic oscillator, with a spring constant that is set by
the mass of the Klein–Gordon field. The way in which the Lagrangian of Eq.
2.85 is Lorentz invariant, especially the term with derivatives, has a nice
physical interpretation. In quantum mechanics, we associate the derivative to
the momentum operator. That is, a derivative acting on a wavefunction
imparts momentum on that wavefunction. In special relativity, we can’t
distinguish between spatial and temporal dimensions, and so the derivative
four-vector ∂μ imparts momentum and energy when acting on a
wavefunction.

What does imparting momentum on a wavefunction mean? If a particle has
momentum and energy, that means that it is moving through space; that is, its
spacetime position has changed. This can be made more precise through the
Taylor expansion. A field ϕ evaluated at the spacetime position x +Δx can be
expanded about its value at  as

(2.86)

That is, the derivative or momentum operator is responsible for displacing the
field from its initial position x. Let’s continue understanding the
consequences of this displacement. If a particle has momentum and is
displaced from some position x, then that particle will have a non-zero
angular momentum about that position x. The exact same thing happens with
our field. Because the field ϕ(x) has been displaced from position x by the
derivative ∂μ, it has a non-zero angular momentum about x.

The next natural question to ask is how much angular momentum the
object ∂μϕ(x) carries about position x. Restoring the factors of ħ, the
momentum operator P̂μ is related to the derivative as

(2.87)



Note that there is one factor of ħ and one free Lorentz index μ. A Lorentz
transformation, like a rotation, of this operator is implemented by a single
matrix Λ as discussed earlier:

(2.88)

Because there is one free Lorentz index and a rotation is implemented by a
single matrix, the derivative imparts one ħ unit of orbital angular momentum
on the field ϕ. A system with non-zero total angular momentum is not
rotationally invariant, and ∂μϕ(x) is not Lorentz invariant, so we need to do a
little more digging to completely understand the Lagrangian.

The term with derivatives in the Klein–Gordon Lagrangian is

(2.89)

and we now have an interpretation for ∂μϕ and ∂μϕ. Each of these corresponds
to imparting one unit of angular momentum on the field ϕ. Two four-vectors
with upper and lower indices, but otherwise the same, effectively differ in the
sign of the spatial components, as indices are raised and lowered with the
metric η. That is, if we choose the convention that

(2.90)

then

(2.91)

Which derivative has the minus sign is irrelevant; all that matters is that there
is a relative minus sign. Because the spatial components differ by a minus
sign, ∂μ and ∂μ displace the field ϕ by the same amount, but impart opposite
momenta. Because angular momentum  for some displacement 



 opposite momentum  means opposite angular momentum. To find the
total angular momentum of the Lagrangian term with derivatives we just sum
together the angular momenta of parts ∂μϕ and ∂μϕ. These are equal in
magnitude and opposite in sign, and so the angular momentum of (∂μϕ) (∂μϕ)
is 0, consistent with the requirement of Lorentz invariance.

The physical picture of the configuration of fields described by the term of
the Lagrangian in Eq. 2.89 is:

The fields are both displaced by an amount Δx from the spacetime position x,
but have equal and opposite momenta. There is indeed 0 net angular
momentum of the (∂μϕ) (∂μϕ) system because their individual momenta lie
along the same line in space. Also, the total momentum of the two fields is
zero, another requirement for Lorentz invariance.

2.2.2 The Dirac Equation
The Klein–Gordon equation just enforces conservation of relativistic energy
and momentum for the field ϕ(x). As a second-order differential equation, it
contains no information about intrinsic angular momentum; that is, there are
no free Lorentz indices in the Klein– Gordon equation. Therefore, the field
ϕ(x) has no intrinsic angular momentum or it is a spin-0 field. Under a
Lorentz transformation, the field ϕ(x) does not transform. If we are to
describe the spin-1/2 and spin-1 particles of the Standard Model, the Klein–
Gordon equation isn’t sufficient. We need to develop relativistic equations of
motion that have free Lorentz indices and so transform non-trivially,
enabling a non-zero spin. In this section, we will develop the Dirac equation
which describes spin-1/2 particles like the electron. In Section 2.2.3, we will
develop the spin-1 equation of motion that describes the photon from the
familiar Maxwell’s equations.

Our starting point for the Dirac equation will be innocent enough. The
Klein–Gordon equation is a second-order differential equation; can we find a
first-order relativistic equation of motion? Let’s assume that there exists a
wave equation linear in time and spatial derivatives, for some field ψ. Let’s



write this in a suggestive form as

(2.92)

for some constant α, a constant vector  and mass m. If this is relativistically
invariant, it must imply the Klein–Gordon equation. In particular, we will
assume that this equation is the square-root of the Klein–Gordon equation.
So, squaring the operators acting on ψ on both sides of this equation, we have

(2.93)

Expanding this equation out, we have

(2.94)

For this to produce the Klein–Gordon equation,

(2.95)

we must have

(2.96)

Here, we have denoted the components of the vector  by βi. The
requirement α2 = −1 is simple and can be satisfied by α being just a number.
By contrast, the requirement βiβj = δij is weird, and cannot be satisfied by the
βi being just numbers! However, let’s just keep going and see where it takes
us.

Let’s denote α = iγ0, βi = iγi, for i = 1, 2, 3 and some things γ0, γ1, γ2, γ3.
Then, these things satisfy

(2.97)

That is, for μ, ν = 0, 1, 2, 3, we have



(2.98)

We can denote this with curly braces {γμ, γν} = 2ημν, where the operation {, }
denotes the anti-commutator. With this notation, our original linear
differential equation is

(2.99)

Box 2.2 Historical Profile: Paul Dirac

Paul Diracwas perhaps the oddest of theoretical physicists, a group that is
synonymous with aloof, absent-minded, and out-of-touch. Dirac was
famously awkward in conversation. He married Margit Wigner, the sister
of Eugene Wigner, another famous theoretical physicist. He would
sometimes introduce his wife to guests at his house by saying “This is
Wigner’s sister, who is also my wife.” When he met Richard Feynman at a
conference, his first words were, “I have an equation. Do you have one
too?”During the relatively rare occasions when he spoke at length, Dirac
was also critical of religion. At the 1927 Solvay conference, Dirac went on
a particularly long tirade against religion, which was surprising to some of
his fellow conference attendees. When asked for his opinion of Dirac’s
view, the Catholic-raised Wolfgang Pauli summarized Dirac’s personality
well, saying “There is no God and Paul Dirac is his prophet.”Everyone,
including Dirac, laughed.

or, with the derivative four-vector ∂μ,

(2.100)

This is known as the Dirac equation, discovered by Paul Dirac, a British
physicist, in 1928.6



So what are these γμ things? While ordinary numbers cannot satisfy the anti-
commutation relations of Eq. 2.98, matrices can. These are referred to as the γ
matrices, and the smallest matrices that satisfy {γμ, γν} = 2ημν I are 4 × 4.
Therefore, the identity matrix I here is 4 × 4. One set of matrices that satisfies
this requirement is

(2.101)

In Exercise 2.6, you will relate this choice of γ matrices, called the Weyl
basis, to other choices of basis. Here, σμ and  are vectors of 2 × 2 matrices:

(2.102)

(2.103)

I in these expressions is the 2 × 2 identity matrix and the σi are the Pauli spin
matrices:

(2.104)

Because the Dirac equation has Pauli spin matrices in it, it describes spin-1/2
particles, like the electron. Because the γμ are matrices, the solution ψ will be
a vector; properly, it is called a four-component spinor. In the following
example, we will make this concrete by explicitly solving the Dirac equation
for the spinor ψ.

Example 2.4 Using the Weyl basis of the γ matrices, let’s solve the Dirac
equation for a spinor ψ.

Solution

We will make the ansatz that a solution to the Dirac equation can be written
in the form



(2.105)

where the four-momentum of the particle is p and u(p) is a four-component
spinor that only depends on p. Plugging this into the Dirac equation, we have

(2.106)

The matrix equation for u is therefore

(2.107)

For a particle with mass m, we can work in the frame in which  so
that p = (E, 0, 0, 0). Then, the Dirac equation in the Weyl basis becomes

(2.108)

Because the matrix is formed from 2 × 2 sub-blocks, we can write the spinor
u as a concatenation of two two-component spinors ξ and ζ:

(2.109)

Plugging this in for u, we find two linear equations for ξ and ζ:

(2.110)

Solving for ζ from the first equation and plugging it into the second, we find
that the energy E satisfies

(2.111)

Therefore, the energy E = ±m. The existence of both positive- and negative-
energy solutions is something we also observed with the Klein–Gordon
equation.

First, setting E = m, we find that ζ = ξ. Correspondingly, setting E = −m,
this fixes ζ = −ξ. Therefore, the two solutions we find to the Dirac equation
are



(2.112)

The + and − subscripts correspond to the positive- and negative-energy
solutions, respectively. Note that the exponential time-evolution factors are
opposite in sign. That is, if the positive-energy solution corresponds to
forward time evolution, the negative-energy solution corresponds to
backward time evolution! While this “traveling backward in time” may seem
exotic, we identify this as an anti-particle of the original particle: it has all
the same properties, but the opposite electric charge.

The two-component spinor ξ represents two possible spin states: spin-up
and spin-down. The relative sizes of the components of ξ represent the
relative probability amplitudes for the particle to have a particular spin.
Therefore, as advertised, the Dirac equation describes a spin-1/2 particle with
mass m.

When Paul Dirac discovered his equation, he found these two solutions
and therefore predicted the existence of anti-particles. J. J. Thomson had
discovered the electron in 1897,7 but no corresponding anti-particle of the
electron had yet been observed. Only four years after the Dirac equation was
introduced, the electron’s anti-particle, called the positron, a spin-1/2 particle
with positive electric charge and mass of 511 keV, was discovered in 1932 by
Carl Anderson.8

Physical Interpretation of the Dirac Lagrangian

As we did with the Klein–Gordon equation, it is useful to formulate a
Lagrangian from which the Dirac equation follows by minimization of the
action. Note that the solution to the Dirac equation ψ is a complex spinor and
as such has a conjugate spinor that we will denote as ψ. As complex spinors,
we can consistently take ψ and ψ to be independent of one another.
Therefore, the action from which the Dirac equation can be derived is

(2.113)



The derivative in the action acts to the right. Because ψ and ψ are
independent, we can vary the action with respect to either separately. Varying
the action with respect to ψ and setting it to zero indeed produces the Dirac
equation:

(2.114)

The Lorentz-invariant Dirac Lagrangian is therefore

(2.115)

The Lorentz invariance of this Lagrangian is fascinating. First, let’s focus
on the mass term in the Lagrangian:

(2.116)

As it describes a spin-1/2 field (like the electron), ψ carries spin-1/2. Non-
zero spin is not Lorentz invariant because it will transform under a rotation.
For this term to be Lorentz invariant, its total spin must be zero. The total
angular momentum of ψψ is found from summing the spins of ψ and ψ, and
therefore the spins of ψ and ψ must be anti-aligned. Note also that because
this term has no derivatives, the spinors are not displaced from the spacetime
point x. The physical configuration of this term is therefore:

This term indeed has total angular momentum 0 and so is Lorentz invariant.
With this understanding, we can then interpret the term in the Lagrangian

with the derivative

(2.117)

In the discussion of the Lagrangian of the Klein–Gordon equation, we argued
that the derivative displaces the field by an amount that provides it with one ħ
unit of orbital angular momentum. In the Klein–Gordon case, there were two
derivatives whose contributions to the orbital angular momentum canceled,
producing a Lagrangian which had total spin 0 and was Lorentz invariant. In



the Dirac Lagrangian case, we have only a single derivative, and so to make
the total spin 0, it must be canceled in some other way. Indeed, because the
spinor ψ carries spin-1/2, we can see how this happens. Because the
derivative acts only on ψ, it is displaced in space from ψ. If the spins of ψ and
ψ were anti-aligned, as they were for the mass term, then this configuration
would have total spin 1, and not be Lorentz invariant.

Thus, the γ matrices play a crucial role. With the derivative imparting one
unit of angular momentum, the total angular momentum can be zero if the
spins of ψ and ψ are aligned and oriented opposite that to the orbital angular
momentum. Therefore, the effect of the γ matrix in Eq. 2.117 is to align the
spins of ψ and ψ. Then, the angular momentum in the spin will exactly cancel
the orbital angular momentum, and render this term Lorentz invariant. The
physical configuration of this term is therefore:

For illustration, we have drawn the spins to be parallel to the momentum of
spinor ψ, but they are of course in the direction opposite to the total orbital
angular momentum.

2.2.3 Electromagnetism
From the spin-1/2 Dirac equation, let’s now move to spin-1. Interestingly, the
spin-1 equations of motion are those with which you are likely the most
familiar. Electromagnetism was the first physical theory to be constructed
that was Lorentz invariant. Maxwell’s equations for electric field  and
magnetic field  in natural units where μ0 = ϵ0 = c = 1, are

(2.118)

(2.119)

As written, these are not manifestly Lorentz invariant; nothing is expressed in



terms of four-vectors. The charge density ρ and the current density  can be
combined into a current four-vector:

(2.120)

This transforms under Lorentz transformations as a four-vector.
With a total of six components, the electric and magnetic fields can’t

combine into a four-vector. However, they can combine into an anti-
symmetric tensor Fμν which transforms linearly under Lorentz
transformations. The anti-symmetric tensor Fμν satisfies

(2.121)

and can be written as a matrix with electric and magnetic fields as entries of
the matrix:

(2.122)

In this form, it is an anti-symmetric matrix. As it has two Lorentz indices μ
and ν, it transforms with two Lorentz matrices Λ:

(2.123)

Fμν is called the field strength tensor of electromagnetism.
The two Maxwell’s equations that involve charge (Gauss’s law and

Ampère’s law) can be expressed very compactly:

(2.124)

Gauss’s law, for example, corresponds to taking the index ν = 0. Then, J0 = ρ
and

(2.125)



In general, Eq. 2.124 is nicely Lorentz invariant. We can express Eq. 2.124 as

(2.126)

and this still equals 0 after Lorentz transforming:

(2.127)

The other two of Maxwell’s equations, those with no charges, follow from
the Bianchi identity

(2.128)

Note that the Bianchi identity is also Lorentz invariant.
There’s an aspect of Maxwell’s equations that we haven’t accounted for

yet. Maxwell’s equations can be equivalently expressed in terms of a scalar
potential V and a vector potential  with the definitions

(2.129)

With these potentials, Maxwell’s equations exhibit a gauge symmetry. The
potentials can be changed in a way that does not modify the physical electric
and magnetic fields. For an arbitrary function λ of space and time, the gauge
transformations

(2.130)

produce the identical electric and magnetic fields. For example, for the gauge
transformation of  note that the curl of a gradient is always 0:

(2.131)

Therefore, the magnetic field is unchanged under this gauge transformation.
The introduction of these scalar and vector potentials motivates the
introduction of the four-vector potential Aμ:

(2.132)



The gauge transformation of this object can be compactly represented as

(2.133)

The field strength tensor also has a nice representation in terms of Aμ.
Appropriately identifying the electric and magnetic field components, we can
express Fμν as

(2.134)

Note that this is invariant to gauge transformations:

(2.135)

Also, in this form, the Bianchi identity is a trivial consequence of the fact that
partial derivatives commute with one another: ∂μ∂ν = ∂ν∂μ.

This will be discussed at various points in this book, but these gauge
transformations, despite their name, aren’t transformations, per se. In
particular, under a gauge transformation, the physical electric and magnetic
fields are unchanged. Therefore, there is no observable consequence of a
gauge transformation of the vector potential. More precisely, the gauge
transformation should be thought of as an identification of a class of vector
potentials. Any two vector potentials Aμ and  that are related via a gauge
transformation

(2.136)

correspond to the exact same physical system. In expressing
electromagnetism in terms of the vector potential, we have traded the six
components of the physical electric and magnetic fields for four components
of Aμ, but at the cost of introducing a redundancy of the description of
physics through the gauge transformation. While this may seem like a bad
trade-off, it will actually turn out to be extremely powerful. Requiring the
physical description to be gauge invariant will enable us to essentially
uniquely write down the Lagrangians for the particle physics systems we
consider in this book.



Lagrangian of Electromagnetism

Okay, so using this new four-vector potential and field strength tensor
formalism, how do we write a Lagrangian that is Lorentz invariant and
expresses Maxwell’s equations as a consequence the principle of least action?
We will provide some motivation here, and a more detailed intuitive
construction will be the topic of Chapter 8. The Lagrangian needs to have
kinetic energy, which involves two derivatives. The field strength has one
derivative and we also need to include the current Jμ that couples to the
potential. This motivates the Lagrangian

(2.137)

The −1/4 is a canonical normalization factor that is necessary to match with
the normalization of electric and magnetic fields that we have used in
Maxwell’s equations. The corresponding action of electromagnetism is

(2.138)

Varying the action with respect to Aμ and setting it to 0 produces two of
Maxwell’s equations, Eq. 2.124. The remaining two Maxwell’s equations
follow from the Bianchi identity.

This action is both Lorentz invariant and gauge invariant. Lorentz
invariance is manifest, as all Lorentz indices are contracted. Gauge invariance
is a bit more subtle. Under a gauge transformation, Fμν is invariant, and so the
only thing that might change is the last term of the action, with the current
four-vector coupled to the vector potential. Under a gauge transformation,
this turns into

(2.139)

On the second line, we have used the derivative product rule to move the
derivative off of the function λ. Assuming that the current Jμ vanishes at the



boundary of spacetime, the total derivative term vanishes:

(2.140)

Then, gauge invariance follows from demanding that the divergence of the
current is 0, ∂μJμ = 0, which is just conservation of charge:

(2.141)

Therefore, if electric charge is conserved the electromagnetic action is gauge
invariant.

Photon Equations of Motion

For studying electromagnetism and its consequences in particle physics, it is
most useful to work with the vector potential Aμ directly. We will often refer
to Aμ as the photon field, as it is the object that directly describes the photon.
In the case where there are no sources, Jμ = 0, the equation of motion of Aμ
that follows from Eq. 2.124 is

(2.142)

To solve this equation, we do the now-familiar thing of including the spatial
dependence as an exponential phase, and introducing a function that depends
on the momentum of the photon. For the photon, we have the ansatz

(2.143)

where ϵμ(p) is called the polarization vector of the photon. Plugging this
expression into the equation of motion, we find

(2.144)

The photon is massless so, when it is on-shell, p2 = 0, in which case the
equation of motion for ϵμ reduces to p · ϵ = 0. We can choose the frame in
which the photon’s momentum is aligned along the ẑ-axis and so



(2.145)

where E is the energy of the photon. The most general expression for a
polarization vector that satisfies the equation of motion is

(2.146)

for some values a, b, c. Explicitly, note that

(2.147)

The three constants a, b, c correspond to three different photon
configurations. Focusing first on the components b and c that are
perpendicular to the photon’s three-momentum  it is convenient to
decompose them into two components corresponding to different directions
of the photon’s spin. A right-handed circularly polarized photon has a
polarization vector

(2.148)

This describes a photon whose spin is aligned parallel to its momentum, by
the right-hand rule. (Recall that the cross-product of the electric and magnetic
fields is the Poynting vector, which describes the momentum carried by the
electromagnetic field.) A left-handed circularly polarized photon is
correspondingly represented by

(2.149)

This describes a photon whose spin is anti-parallel to its momentum. Note
that  and ϵR · ϵR = ϵL · ϵL = 0, and ϵR · ϵL = −1. The polarization vector
for a photon traveling in any other direction can be found by rotating these
vectors.

We have constructed the photon to have only two degrees of freedom:
right- and left-handed circular polarization. However, the vector potential Aμ
has four components corresponding to μ = 0, 1, 2, 3. Additionally, we still
haven’t addressed the components of the polarization vector denoted by a in



Eq. 2.146. What’s going on? It turns out that two of the components of the
vector potential do not correspond to degrees of freedom; that is, to physical
states of the photon. To understand this, first take a look at the equation of
motion for the 0th component of Aμ with no sources:

(2.150)

There is no time derivative ∂0 that acts on A0 in its equation of motion. As
such, A0 is not allowed to change with time. Another way to say this is the
following. Because the equation of motion of A0 corresponds to Gauss’s law,
we say that Gauss’s law is actually not an equation of motion (allowing for
time dependence), but rather an equation that imposes a constraint on the
component A0, or the electric field  So, if A0 is not allowed to have time
dependence or propagate in time, then the vector potential Aμ at most has
three degrees of freedom.

We still need to eliminate another degree of freedom; this is accomplished
by the gauge invariance of the electromagnetic action. As mentioned earlier,
the gauge transformation really should be thought of as an identification of
different vector potentials. The 0 vector potential, Aμ = 0, is identified with
(i.e., has the equivalent physical consequences of) the vector potential 
where

(2.151)

Such a vector potential is called pure gauge as it is exclusively a function of
the gauge parameter λ. The zero vector potential produces zero electric and
magnetic fields and as such does not correspond to any propagating degrees
of freedom. Through the expression for the solution to the equations of
motion in Eq. 2.143, the derivative ∂μ corresponds to the momentum of the
photon pμ. That is, the pure gauge potential of Eq. 2.151 corresponds to the
component of the vector potential that lies along the direction of photon four-
momentum. This exactly corresponds to the components of the polarization
vector defined by a from Eq. 2.146, with our choice of direction of the
photon three-momentum. By the argument above, this component cannot
have any physical consequences, and therefore does not correspond to a
degree of freedom of the photon. Out of the four components of the vector



potential Aμ, neither A0 nor the component along the direction of momentum
pμ corresponds to a physical degree of freedom. The photon only has two
degrees of freedom, or only two physical polarizations. Another argument for
why the photon has only two polarizations will be discussed later in Section
3.4.

In our discussion of the Klein–Gordon equation (spin-0) or the Dirac
equation (spin-1/2), this is where we would have ended the discussion, until
we saw the application of the solutions later. However, the photon is a spin-1
particle, and as such its equation of motion is quite weird. Let’s consider the
equation of motion with p2 ≠ 0, also called off-shell. That equation of motion
was

(2.152)

The matrix that corresponds to the object in the parentheses, Dμν ≡ ημνp2 −
pμpν, is degenerate and has determinant 0. To see the degeneracy, note that
anything contributing to the polarization vector that is proportional to the
photon momentum is annihilated:

(2.153)

That is, the matrix Dμν has an eigenvector (pμ) with eigenvalue 0. As such,
Dμν has no inverse.

This feature is a manifestation of the gauge invariance of
electromagnetism. We are free to add with impunity the derivative of any
scalar function to the vector potential, and we get back the same Maxwell’s
equations. When we encode the position dependence in the complex phase,
the derivative turns into the photon momentum. That is, the gauge invariance
of electromagnetism ensures that there are no electromagnetic fields in the
direction of photon propagation. Electric and magnetic fields are purely
transverse; this is encoded in the on-shell equation of motion,

(2.154)

This gauge invariance will actually cause problems if we want to define the
Green’s function of the photon by inverting the matrix Dμν. As it is singular,



we cannot invert this matrix. However, once we fix a gauge by choosing a
particular λ in Eq. 2.133, then the Green’s function for the photon (in a
particular gauge) is well defined. We won’t discuss issues with gauge choice
much in this book. Universally, we will use the Feynman–’t Hooft gauge as
it renders the calculations that we do simplest. Feynman–’t Hooft gauge is a
generalization of Lorenz gauge, which is defined by the requirement

(2.155)

This corresponds to enforcing that the gauge function λ is harmonic:

(2.156)

In Feynman–’t Hooft gauge, the source-free equation of motion of the photon
reduces to

(2.157)

which is just the (massless) Klein–Gordon equation.



Exercises
2.1 Properties of Lorentz Transformations. By explicit matrix

multiplication, show that the matrix Λ that implements a Lorentz
boost along the z-axis with velocity β

(2.158)

leaves the metric invariant:

(2.159)

Recall that the boost factor γ is

(2.160)

2.2 Rapidity. In experimental particle physics, it is often very useful to
express the direction of motion of a particle in terms of its rapidity y.
The rapidity is defined as

(2.161)

for a particle with energy E and z-component of momentum pz. What
makes rapidity so nice is its simple properties under Lorentz
transformation. Perform a Lorentz boost of the energy and momentum
along the ẑ-axis with velocity β. How does the rapidity transform
under this boost? You should be able to write the Lorentz-boosted
rapidity as a simple function of the original rapidity.

2.3 Lorentz-Invariant Measure. Why is d4x Lorentz invariant? Make the
change of variables to a new frame and determine the Jacobian of the
change of variables. You’ll need to use properties of Lorentz



transformations as defined by the relation Eq. 2.23.
Hint: What is the Jacobian if d4x is Lorentz invariant?

2.4 Properties of Klein–Gordon Equation. In the solution of the Klein–
Gordon equation, we introduced the exponential phase factor exp[−ip
· x], wherep is the four-momentum and x is the spacetime position.
What is the frequency of oscillation of this solution to the Klein–
Gordon equation? What is the wavelength? What is the phase
velocity?

2.5 Maxwell’s Equations. In Eq. 2.125, we showed how Gauss’s law
follows from taking the 0 component of the equations of motion of
the electromagnetic Lagrangian. Show explicitly that the three other
of Maxwell’s equations follow from Eqs. 2.124 and 2.128. To do this,
take individual components and identify the corresponding Maxwell’s
equation.

2.6 Properties of the Clifford Algebra. In writing the Dirac equation, we
chose a particular representation of the γ matrices that satisfied {γμ,
γν} = 2ημν, which is called the Clifford algebra. The choice we used
is called the Weyl basis, in Eq. 2.101. In this exercise, we will study
the Clifford algebra and the Weyl basis.

(a) By explicit multiplication, show that the γ matrices in the Weyl
basis satisfy the Clifford algebra.

(b) The Weyl basis isn’t the unique choice of matrices that satisfy
the Clifford algebra. Another set of matrices that does so is

(2.162)

This choice of γ matrices is related to the Weyl basis by a
similarity transformation:

(2.163)

where S is a unitary matrix such that SS† = I. A similarity
transformation of the γ matrices respects the Clifford algebra.
Determine the matrix S that relates the Weyl basis to this new



basis of γ matrices.

(c) Applying the similarity transformation to the Dirac equation, we
find

(2.164)

Given the solution to the Dirac equation that we found in
Example 2.4, use the similarity transformation S you found in the
previous part to find the solutions to the Dirac equation using the
γ matrix basis of Eq. 2.162.

2.7 Relativity of Spin-1/2. The Dirac equation involves the γ matrices,
which themselves are constructed out of the Pauli spin matrices, σi.
The Pauli matrices are

(2.165)

Construct a set of matrices σμ where

(2.166)

where I is the 2 × 2 identity matrix.

(a) For a momentum four-vector pμ = (p0, p1, p2, p3)μ, compute the 2
× 2 matrix p · σ. What is det(p · σ)?

(b) What is the trace of this matrix, tr(p · σ)? Recall that the trace is
the sum of diagonal entries. What are the two eigenvalues of the
matrix p · σ? Use the fact that the determinant is the product of
eigenvalues and the trace is the sum.

(c) A general Lorentz transformation of the matrix p · σ can be
implemented by multiplying on the left and right by appropriate
2 × 2 matrices A and B:

(2.167)



Note that the matrix p · σ is Hermitian: (p · σ)† = p · σ. Use this
to prove that B = A†.

(d) Using the result in part (a), what is det(AA†)?

(e) Construct the matrices A that implement the following Lorentz
transformations on the four-vector p:

(i) A rotation by an angle ϕ in the x̂ŷ plane.
(ii) A boost along the ẑ-axis with velocity β.

To do this, it is useful to first construct the corresponding matrix
p · σ after Lorentz transformation, and then work out the
components of the matrix A from that.

2.8 Dark Matter Searches. Numerous experiments are searching for dark
matter, a component of energy in the universe necessary for the
observed features of early universe cosmology, large-scale structure,
and galactic dynamics. There has been no direct evidence for a
particle nature of dark matter as of yet, but there are very strong
constraints on its properties. Some of the strongest constraints were
imposed by null observations of the LUX (Large Underground
Xenon) dark matter experiment. LUX consists of a vat of 250 kg of
ultra-pure liquid xenon situated about 1 mile (1.6 kilometers)
underground in the Sanford Underground Research Facility in Lead,
South Dakota, USA. In this exercise, we will assume that the xenon is
pure 131Xe.

A major result from the LUX experiment is shown in Fig. 2.3. This
is a plot of the constraints that it has placed on possible dark matter
particles called WIMPs (Weakly Interacting Massive Particles). LUX
searches for WIMPs by their scattering off of the 131 Xe nuclei. If a
significant amount of kinetic energy is transferred to the 131 Xe, then
it excites a scintillator and is observed as a “hit.” The amount of
kinetic energy transfer is a function of the WIMP mass (the abscissa
on the plot) and the rate of hits is a function of the strength of
interaction of the WIMPs with xenon (the ordinate on the plot). The
interaction strength is measured in a unit of cross section called a
zeptobarn. We’ll introduce the “barn” unit in Chapter 4. By the way,



such a plot of dark matter mass versus interaction rate is called a
Goodman–Witten plot.9

Fig. 2.3 A plot of the WIMP mass and interaction strength limits from the LUX experiment. Reprinted
figure with permission from D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 118, no. 2,
021303 (2017). Copyright 2017 by the American Physical Society.

WIMP masses and interaction strengths have been ruled out (i.e.,
not observed to exist) by the LUX experiment above the thick black
curve. In this exercise, we will study where the lower bound on the
WIMP mass comes from (the nearly vertical bound on the left of the
plot). You will study the upper bound on the mass in Exercise 4.8.

(a) A model for WIMP dark matter in the Milky Way galaxy is as a
spherically distributed halo of particles that is at rest. What is the
WIMP’s apparent speed through the LUX detector on Earth? The
radius of the solar system’s orbit around the Milky Way is about
25,000 light-years, with an orbital period of about 230,000,000
years. (The fact that the Earth orbits the Sun affects this on a
yearly timescale, but we will ignore this small effect.)

(b) The scattering process that LUX is sensitive to is



(2.168)

where χ denotes a WIMP particle. Write down the four-vectors
for all particles involved in this collision. Assume that the initial
xenon nucleus is at rest, and the initial dark matter particle χ’s
momentum is aligned along the ẑ-axis. Call these four-vectors
pXe and pχ, respectively. After collision, assume that both χ and
xenon only have a non-zero ẑ-component of momentum. Call the
four-vectors after collision  and  Make sure all four-
vectors are on-shell and enforce three-momentum conservation
(don’t worry about energy conservation yet). Express the four-
vectors in terms of the mass of the WIMP mχ, the mass of the
xenon nucleus  the initial ẑ momentum of the WIMP pz, and
the final ẑ-component of momentum of the xenon, 
(Assuming that the scattering occurs in a line means that the
energy transfer to the xenon is maximized.)

(c) Now, using the conservation of the momentum four-vectors,

(2.169)

solve for the recoiling xenon’s momentum  A nice way to do
this is to write  and solve for α. You will find two
solutions; only report the solution corresponding to the larger
value of momentum. You should find

(2.170)

(d) LUX measures the recoiling xenon nucleus’s kinetic energy K.
Relativistically, this is defined as  What is the
kinetic energy of the recoiling xenon nucleus as a function of
WIMP mass mχ and momentum pz? Because the velocity of the
dark matter halo is small, Taylor expand your result to lowest
non-zero order in pz and set pz = mχv, where v is the WIMP



velocity with respect to Earth. You should find

(2.171)

(e) Below a kinetic energy of about 1 keV, LUX cannot detect the
recoiling xenon nucleus. Using the result of part (d), what is the
minimum dark matter mass that can provide this kinetic energy
kick? You’ll also need the WIMP velocity v calculated in part (a)
of this exercise. Compare this mass to the lower mass bound in
Fig. 2.3. (We’ve made many simplifications, so you’ll see that
LUX is sensitive to masses a bit below what you will find in this
exercise.)

2.9 Top Quark Decay. This exercise studies the decay of the top quark,
the heaviest particle of the Standard Model. Because the top quark
decays almost instantly, its properties have to be inferred from its
decay products. At the LHC, a plot from a study by CMS to determine
the top quark mass is presented in Fig. 2.4. This plot shows the
invariant mass of the four-momenta of two of the decay products of
the top quark (a bottom quark and a lepton) versus the number of
observed events at the respective mass. The features of this
distribution enable a determination of the top quark mass. Here, we
will identify the endpoint of this distribution and its connection to the
top quark. Later, in Chapter 11, we will compute this distribution in
the context of the electroweak theory in Example 11.2 and you will
test that prediction in Exercise 11.8.



Fig. 2.4 Distribution of the invariant mass of the bottom quark and the charged lepton from the decay
of a top quark produced in proton collisions at the CMS experiment. From A. M. Sirunyan et al. [CMS
Collaboration], “Measurementof the tt production cross section using events with one lepton and at
least one jet in pp collisions at  TeV,” J. High Energy Phys. 1709, 051 (2017),
doi:10.1007/JHEP09(2017)051 [arXiv:1701.06228 [hep-ex]].

(a) The top quark decays almost 100% of the time to a W boson and a
bottom quark: t → W+ + b. It is easiest to analyze this decay
using Lorentz-invariant four-vector dot products. Let pt, pW, and
pb be the top quark, W boson, and bottom quark momentum four-
vectors, respectively. By conservation of momentum we have

(2.172)

The bottom quark has a mass that is much smaller than the W
boson, and so, to a good approximation, we can assume that it is
massless. With this assumption, evaluate the dot product 2pW ·
pb. Your answer should be in terms of the mass of the top quark
mt and the mass of the W boson mW.



(b) The W boson is also an unstable particle that decays. One of the
ways that the W boson can decay is via a positron and a neutrino:
W+ → e+ + νe. Assuming that both the positron and the neutrino
are massless, evaluate the four-vector dot product 2pl · pν, where
pl is the four-vector of the positron and pν is the four-vector of
the neutrino.

(c) Now, we want to combine these decays. The top quark decays
sequentially as

(2.173)

Using the conservation of four-momentum,

(2.174)

express the four-vector dot product 2pl · pb in terms of mt, mW,
and the dot product pν · pb.

(d) As we will discuss later in Chapter 5, neutrinos interact very
weakly with other matter, and so are not observed in particle
collision experiments. In the top quark decay studied in this
exercise, we only observe the momentum of the bottom quark
and the electron. This means that we cannot determine the top
quark mass by just summing the four-momenta of its decay
products. However, we can exploit appropriate limits. If the
neutrino and bottom quark are both massless, what is the
minimum value of the dot product pν · pb? Therefore, what is the
maximum value of  The four-momentum of both the
positron and the bottom quark are measurable, and so this
endpoint can be found and used to determine the mass of the top
quark. In the following, call the dot product 

(e) Figure 2.4 is the distribution of mlb measured by CMS. Using
this plot and the result of the previous part, estimate the top
quark mass, given the W mass mW = 80 GeV. Note that because
of the imperfections in identifying the bottom quark, the
endpoint of this distribution is smeared out over a range of tens



of GeV. To estimate the endpoint of the distribution, just
extrapolate the steepest part of the distribution to the abscissa.
The method used by CMS to determine the

top quark mass is more sophisticated: information about the entire
shape of the distribution is used, and not just the endpoint.

2.10 Research Problem. In particle physics, we assume that the universe is
Lorentz invariant at short distances. Every observation ever made is
consistent with this assumption. However, is this actually true? Is it
possible for Lorentz invariance to be violated at shorter distances than
we have probed?

1 Reprinted by permission from Springer Nature: Springer Nature Emmy Noether 1882–1935 by
A. Dick (1981).

2 E. Noether, “Invariant variation problems,” Gott. Nachr. 1918, 235 (1918) [Transp. Theory
Statist. Phys. 1, 186 (1971)] [arXiv:physics/0503066]. This result is properly known as
Noether’s first theorem as, in that same paper, Noether also proves what is now known as
Noether’s second theorem. Both theorems are profound statements about Lagrangian
mechanics.

3 K. Greisen, “End to the cosmic ray spectrum?,” Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin
and V. A. Kuzmin, “Upper limit of the spectrum of cosmic rays,” JETP Lett. 4, 78 (1966)
[Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)].

4 W. Gordon, “Der Comptoneffekt nach der Schrödingerschen theorie,” Z. Phys. 40, 117 (1926);
O. Klein, “Elektrodynamik und wellenmechanik vom standpunkt des korrespondenzprinzips,”
Z. Phys. 41, 407 (1927); V. Fock, “On the invariant form of the wave equation and the
equations of motion for a charged point mass,” Z. Phys. 39, 226 (1926) [Surveys High Energ.
Phys. 5, 245 (1986)].

5 By the way, to see that the potential energy density u contains the term  we
can take a derivative by the finite difference method and Taylor expand:

(2.78)

We can safely ignore the  term, called a total derivative, because we always integrate
over all space and this just contributes a constant energy offset.

6 P. A. M. Dirac, “The quantum theory of the electron,” Proc. Roy. Soc. Lond. A 117, 610
(1928).

7 J. J. Thomson, “Cathode rays,” Phil. Mag. Ser. 5 44, 293 (1897).
8 C. D. Anderson, “The positive electron,” Phys. Rev. 43, 491 (1933). See also C-Y Chao, “The

absorption coefficient of hard γ-rays,” Proc. Natl. Acad. Sci. U. S. A. 16, no. 6, 431 (1930).
Chung-Yao Chao was a fellow student at California Institute of Technology with Anderson and



the results of Chao’s experiments were explained by the existence of the positron, though not
known to him at the time.

9 M. W. Goodman and E. Witten, “Detectability of certain dark matter candidates,” Phys. Rev. D
31, 3059 (1985).



3

A Little Group Theory

Beauty is typically associated with symmetry. We like things that have
balance, a repeating structure, or look the same when viewed from various
directions. We notice almost immediately if the subject of a photograph is
uncentered, if a shelf isn’t level, or if the pattern of a mosaic is abruptly
broken. Beyond these desirable aesthetic properties, symmetries are also
endowed with a rich mathematical description in the theory of groups. The
connection of symmetries to physics is provided by Noether’s theorem
through their manifestation of conservation laws. Groups and their relevance
in quantum mechanics were firmly established by Eugene Wigner in 1931 in
a result now known as Wigner’s theorem.1 If someone says that a theory of
Nature is “beautiful,” that means that it is experimentally verified and
exhibits an extensive symmetry.

In this chapter, we review groups and symmetries and their application to
particle physics. We’ve already hinted at symmetries from Lorentz
transformations in the previous chapter, but this likely raised more questions.
We just postulated particles of different spin, but where does that come from?
Why only those spins? Additionally, in quantum mechanics, commutation
relations of Hermitian operators are central to identification of commensurate
observables. Why Hermitian and why commutators? It all follows from
applying the group theory to quantum mechanics, and we will develop this
from the ground up in this chapter.



3.1 Groups as Symmetries
Here is a familiar object:

You might recognize it; it’s a triangle. There’s nothing identifying about the
triangle, but it is special: it is an equilateral triangle. You might be wondering
“What does a triangle have to do with particle physics?” and rightly so. Call
the vertex at the top of the triangle vertex 1 and going clockwise call the next
vertex 2, and the final vertex 3. You’ll have to remember this because we
won’t make any identifying marks on the triangle yet.

Now, imagine closing your eyes and while your eyes are closed, the
vertices of the triangle are moved around. We’ll keep the orientation of the
triangle the same so that a vertex always points up. After the vertices are
moved around and you open your eyes, can you identify which one is vertex
1? The triangle is oriented in the same way as before you closed your eyes,
and it is equilateral, so there is no way you could know (unless the triangle
had identifying marks otherwise). Any action while your eyes were closed
just permuted the vertices. Operations that leave an object or system
unchanged, like permutation of vertices of an equilateral triangle, are called
symmetries. Symmetries are elevated to a central guiding principle through
their consequences for conservation laws, by Noether’s theorem.

Let’s work systematically to determine what we could do to the triangle
that makes it look the same before and after action of a symmetry
transformation. To make the action of these symmetries more clear, we now
write numbers on the vertices. One thing we can do is nothing at all. Another
is rotation by 120◦ clockwise:



Another is rotation by 240◦:

We could also rotate by 360◦, but this is the same as not doing anything.
Additionally, we could rotate by 120◦ or 240◦ counterclockwise as:

but this is identical to the 240◦ clockwise rotation. Therefore, there are only
three possible rotations. Is that all we can do? As a rule of thumb, the answer
to every rhetorical yes/no question is “No”; see Hinchliffe’s rule.2

There’s nothing that distinguishes the back from the front of the triangle,
so we can also flip the triangle about a vertex. Let’s flip about vertex 1:

What if we flip about 1 again? This goes back to the original orientation;
“nothing” was done. We can flip about any vertex:

What if we do two different flips consecutively? Let’s flip about 1 and then



2:

This is just identical to a 120◦ clockwise rotation. One can try this with any
two operations we have listed. The composition (= subsequent application) of
two symmetries of a triangle is still a symmetry. These six symmetries that
we identified are everything.

These examples should be sufficient to illustrate that the action of these
symmetries has a rich mathematical structure. Indeed, they form a
mathematical object called a group. A group is a set of actions (like 120◦

rotation) that multiply (or compose) with an operation denoted by ·. The set
of these actions satisfies the four properties:

1 In the group, there is an identity element, 1. For any element a in the
group,

(3.1)

2 Every element of the group has an inverse. For an element a, we denote its
inverse as a−1 and it satisfies

(3.2)

3 The group is closed. For any two elements a and b in the group, their
product c is in the group:

(3.3)

4 The multiplication/composition operation is associative. For three
elements in the group a, b, and c, the association of terms in a product is
irrelevant:

(3.4)

These four properties define a group. The symmetry group of the equilateral



triangle is called the symmetric group of degree 3 and is denoted by S3. It’s a
very useful exercise to verify that the elements of S3 we have identified here
form a group, though we won’t do that here.

One thing to note here is that while these properties seem familiar from
typical multiplication of numbers (which forms a group when 0 is not
included), there is a very important property that is not implied by the group
requirements. It is not required that a group be commutative: for two
elements of the group a and b, we do not require

(3.5)

For groups in which all elements do commute (like multiplication with
numbers) we say that the group is Abelian. For groups where this is not true,
the group is called non-Abelian, named after the Norwegian mathematician
Niels Abel. The group of symmetries of the triangle are non-Abelian. Two
different flips result in a different orientation if they are applied in opposite
order:

While we will consider and study Abelian groups in this book, most
symmetries in particle physics are implemented by non-Abelian groups. To
get a better intuition for groups, in the next sections we study the group of
rotations in two and three dimensions. We’ve already seen this group in our
discussion of the construction of the dot product in Section 2.1.1.



3.2 The Rotation Group
Recall that a matrix M that rotates a vector  leaves the identity matrix
invariant:

(3.6)

The vector  is rotated as  The set of matrices that leave the identity
invariant form a group. To see this, we just check all four properties. First,
note that the identity matrix I is an element of the group:

(3.7)

The matrix I multiplied by any rotation matrix M is just M.
The rotation matrix has an inverse: M⊺M = I, and so M−1 = M⊺. If M is in

the group, then so is its transpose M⊺, as that implements a rotation in the
opposite direction as M. Matrix multiplication is associative: for three
matrices A, B, and C, we have

(3.8)

Finally, the set of matrices is closed. Let M and N be two rotation matrices:

(3.9)

Then, consider the matrix MN. We have

(3.10)

and so

(3.11)

This proves that the set of rotation matrices forms a group. The set of N-
dimensional rotation matrices is called the orthogonal group, denoted as



O(N).

3.2.1 Two-Dimensional Rotations: SO(2)
With the group nature of rotation matrices established, let’s see how this
manifests for rotations in two and three dimensions. Starting with rotations in
two dimensions we consider those 2 × 2 matrices M that satisfy

(3.12)

Let’s figure out some properties of this group. First, note that

(3.13)

and so det M = ±1. What we typically think of as rotations preserve relative
orientation of vectors. This corresponds to matrices with determinant 1 and
are referred to as proper rotations. A matrix with a determinant of −1 flips
entries of a vector, changing orientation. For example, the matrix

(3.14)

flips v1 ↔ v2 when acting on  while the matrix

(3.15)

turns v1 → v1, and v2 → −v2. These negative determinant matrices have
moved the +x̂-axis from right of the ŷ-axis to the left. We will discuss this
more in Chapter 10, but these matrices with determinant of −1 are examples
of parity transformations: they flip entire axes, without rotation.

Proper rotations are implemented by matrices with det M = 1. Note that
this restriction is a group: two matrices M and N each with determinant 1
have a product that also has determinant 1:

(3.16)



For the rest of this section, we will restrict to studying matrices with unit
determinant.

The set of all N-dimensional matrices M with determinant 1 that satisfy

(3.17)

is called the special orthogonal group of dimension N, denoted as SO(N).
We’re studying SO(2) now. All 2 × 2 matrices that are elements of SO(2) can
be written as a function of one rotation angle θ:

(3.18)

Note the product of two matrices with rotation angles θ and ϕ is simple:

(3.19)

This result implies that the SO(2) group is Abelian:

(3.20)

This makes sense: SO(2) is the group of symmetries of a circle. We can rotate
the circle by any angle θ and the circle looks unchanged. An additional
rotation by an angle ϕ is just another rotation, with a total rotation angle of θ
+ ϕ.

A circle can be represented in many ways, and this enables us to express its
symmetries in many ways. One way to represent a circle is on the complex
plane. The circle with radius r consists of those points (x, y) such that

(3.21)

A complex number z can be expressed in terms of a magnitude r and phase ϕ:



(3.22)

The absolute value squared is then |z|2 = reiϕ · re−iϕ = r2. This is unchanged if
the phase ϕ is rotated by any angle θ. That is, if ϕ → ϕ + θ, then

(3.23)

A rotation of the circle in the complex plane by an angle θ is accomplished
by multiplying complex numbers by eiθ. This angle θ ∈ [0, 2π), because
angles larger than 2π or smaller than 0 can be mapped onto [0, 2π). Note also
that the product of these factors, with angles of rotation of θ and ϕ, is

(3.24)

This is the exact same multiplication law as we found for SO(2)! These
rotations of a circle in the complex plane are called the unitary group of one
complex dimension, or U(1). What we have shown is

(3.25)

where ≃ means that these two groups are identical (isomorphic) as groups.
U(1) is called unitary because an element times its complex conjugate is
unity:

(3.26)

We say that the set of rotations implemented by eiθ are a unitary
representation of SO(2). That is, they are unitary and satisfy or “represent”
the multiplication law of SO(2).

3.2.2 Three-Dimensional Rotations: SO(3)
Our universe is not two-dimensional, it is three-dimensional, so SO(2) will be
of limited use for understanding the properties of rotations. So, let’s move on
to discussing SO(3), the symmetries of a two-dimensional sphere. The
matrices M that are elements of SO(3) satisfy

(3.27)



and det M = 1. Unlike SO(2), SO(3) is non-Abelian. We can visualize this
through rotations of a three-dimensional object, like a coffee cup. Let’s
consider rotation of the handle, and then about the cup; and vice-versa. We
find something different depending on the order of rotations, as shown in Fig.
3.1. These rotations can be expressed by the three Euler angles, which might
be familiar from classical mechanics. There are three Euler angles because
there are three orthogonal planes to rotate in three dimensions.

Fig. 3.1 An illustration of the non-Abelian nature of rotations in three dimensions, SO(3). Composing
rotations of a coffee cup in different orders results in a different final orientation of the cup.

For applications to quantum mechanics and particle physics, we want to
identify the unitary representations of SO(3). This is not just a novelty;
unitary representations preserve probabilities in quantum mechanics. For
concreteness, let’s consider a spinor ψ that describes the electron, a spin-1/2
particle. A rotation of the spinor is implemented by a matrix M as

(3.28)

where the matrix M rotates the different components of the spinor into one



another. ψ is a quantum mechanical object: it represents a complex
probability amplitude for observing the electron with a given spin. The
probability density ρ is formed from multiplying ψ by its conjugate 

(3.29)

As a probability density, ρ is an observable and so cannot change under a
rotation implemented by M. Explicitly, ρ transforms under a rotation as

(3.30)

ψ transforms with the Hermitian conjugate M† from the right because it is
itself the transpose conjugate of ψ. For ρ to be invariant and M to be a
symmetry we must enforce

(3.31)

This defines M to be a unitary matrix that implements a rotation. More
generally, a symmetry in quantum mechanics is implemented by a unitary
matrix or a unitary representation of the symmetry group, as required by
probability conservation.3

Enforcing unitarity of M is actually quite easy. The procedure was
essentially introduced in our discussion of SO(2) and U(1). While SO(2)
elements are 2 × 2 matrices, U(1) elements are just exponential phases, with
absolute value equal to unity. We can generalize this procedure to SO(3) or
any group of which we want a unitary representation. Let’s write the matrix
M in the group SO(3) as an exponential:

(3.32)

where X is itself a matrix. Exponentiating a matrix may look weird, but it is
just defined by the Taylor expansion

(3.33)

Multiplying M by its Hermitian conjugate then establishes what we mean by



unitary representation:

(3.34)

For the final equality to hold, we must enforce X = X†, or that the
exponentiated matrix is Hermitian.

A particularly nice way to represent the exponentiated matrix X is by a
linear combination of a basis of matrices T a, where a ranges over the basis
matrices. That is, we express

(3.35)

where the α a are real constants and Einstein summation is employed. We call
the basis matrices Ta the Lie algebra of the group, named after another
Norwegian mathematician, Sophus Lie. A general unitary matrix M is then
expressed in terms of its Lie algebra as

(3.36)

In the case of SO(3), we denote its Lie algebra with lowercase Gothic script
so(3). The Lie algebra so(3) consists of three matrices Tx, Ty, Tz which
implement rotations about the x, y, and z axes, respectively. The real
coefficients that appear in the exponentiated group element correspond to the
rotation angle about each axis. Quantum mechanically, because the Lie
algebra matrices are Hermitian, we interpret them as measurement operators
whose real eigenvalues correspond to possible outcomes of experiments. For
so(3), for example, Tx measures the x-component of angular momentum of a
wavefunction.

The Lie algebra isn’t just a vector space. It has a very rich structure which
is enforced by closure of the group. Let’s consider two group elements M and
N expressed as

(3.37)

for some real constants α a and β a. If the group is closed, then the product of
M and N must be able to be written as an exponentiated linear combination



of the Lie algebra:

(3.38)

for some real constants γ a. If the Ta were just numbers, as they are for U(1), γ
a would just be the sum of α a and β a. However, matrices in general do not
commute, and so one must be very careful with the order of multiplication.
Using the Taylor expansion definition of the exponentiated matrices,
carefully multiplying M by N, one finds

(3.39)

[Ta, Tb] represents the commutator of the Lie algebra matrices:

(3.40)

The dots in the exponent correspond to nested commutators involving three,
four, and more matrices. This product of exponentiated matrices is called the
Baker–Campbell– Hausdorff (BCH) formula, and you will show this
structure in Exercise 3.4.

For the result of the BCH formula to be compatible with the unitary
representation of group elements, we must enforce the very non-trivial
quadratic relationship of the Lie algebra:

(3.41)

The fabc objects are called the structure constants and are just a collection of
real numbers. This commutation relation defines the Lie algebra. Given a
basis Ta and the structure constants fabc, the group elements and their
multiplication rules are uniquely defined by exponentiation. While this seems
quite abstract, you have likely seen the so(3) commutation relation before,
when studying angular momentum in quantum mechanics. For an angular
momentum operator L̂i that implements a rotation about axis i, where i = x, y,
z, the commutation relation is

(3.42)



ϵ ijk is called the Levi–Civita tensor or totally anti-symmetric symbol which
is defined to be 1 if ijk are in order (xyz, zxy, or yzx), −1 if they are in the
opposite order (zyx, xzy, or yxz), and 0 if any two of i, j, and k are identical.
For example, we have

(3.43)

Note that this structure of the Lie algebra implies that SO(3) is a non-Abelian
group. A group is Abelian if and only if the structure constants of its Lie
algebra are all 0.

3.2.3 SO(3), SU(2), and Spin
As SO(3) is the rotation group of symmetries of a sphere, we naturally expect
its Lie algebra to consist of 3 × 3 matrices. Just as we saw with SO(2) and
U(1), however, we can represent a group in many different ways and all that
is required is that the Lie algebra so(3) is satisfied. Any set of matrices that
satisfies Eq. 3.42 is so(3) and defines quantum mechanical observables. One
set of matrices that satisfies the so(3) Lie algebra are the Pauli spin matrices,
divided by 2. By explicit multiplication, you can show that

(3.44)

where the σ i are defined in Eq. 2.104. Oddly, the Pauli spin matrices are 2×2
matrices, and define the Lie algebra su(2) for the group SU(2). SU(2) is the
special unitary group of 2 × 2 unitary matrices with determinant 1.
Apparently, the su(2) and so(3) Lie algebras are identical:

(3.45)

The consequences of this identification for particle properties are profound.
SU(2) matrices enact rotations on two-component spinors, as we saw in the
solutions of the Dirac equation. The properties of these rotations, however,
are very strange. Let’s just consider a rotation by an angle ϕ about the ẑ-axis
implemented by the Lie algebra su(2). The matrix that implements this
rotation is found by exponentiating σ3 appropriately:



(3.46)

This compact form of the matrix can be found by explicitly summing the
Taylor expansion definition of the exponential. Now, we see the importance
of the factors of 1/2 in the su(2) Lie algebra with the Pauli matrices. When
we rotate about the ẑ-axis by 2π, we might expect to get back to where we
started. However, this matrix does not become the identity matrix if ϕ = 2π:

(3.47)

A rotation by 2π is equivalent to multiplying by −1! You only get back to the
identity after rotating by 4π:

(3.48)

This feature of rotations of spinors is why we call them “spin-1/2.” A rotation
by 2π only rotates the spinor by 1/2 of that, or by an angle π.

Symmetries of the sphere don’t describe all possible rotations in three
dimensions. From our analogy of rotations as symmetries of a sphere, the fact
that only rotating by 4π gets you back to the identity may seem extremely
counterintuitive. To make sense of this feature of rotations, there is a simple
demonstration that you can do. The procedure is illustrated in Fig. 3.2. Put
your arm out straight with your palm up and imagine that you are carrying a
plate on your hand. Now, rotate your hand by 2π, passing your hand above
your arm, keeping your palm up so the plate doesn’t fall off. You’ll find that
your hand is in the original orientation, but your arm is twisted. The
remarkable thing about rotations in three dimensions is that you can rotate
your hand in the same direction and completely untwist your arm. Now,
rotate your hand by 2π keeping the plate on your palm, but this time pass
your hand under your arm. If you did it right, your arm should be untwisted!
Only after a total rotation of 4π can you untwist your arm. Note the
importance of working in three dimensions: you have to rotate above and
below your arm to untwist it. It’s therefore impossible to untwist in two
dimensions by continuing to rotate. This demonstration is referred to as the



plate trick, but it is also called Dirac’s belt trick, the Balinese cup trick, and
a number of other names.

Fig. 3.2 Illustration how to rotate your hand to demonstrate that rotations by 4π in three dimensions are
identical to no rotation.

Even though we started with what we thought of as the rotation group in
three dimensions, SO(3), by following our noses guided by probability
conservation in quantum mechanics, we are led to the group SU(2). Elements
of SU(2) implement rotations in three dimensions. The particular type of
matrix that implements the rotation of a given object defines its spin.
Therefore, we also call the group SU(2) the spin group as its representations
define different spins. For the first few representations:

1 The one-dimensional representation consists of one-dimensional matrices
with determinant 1 or just the number 1. That is, the one-dimensional
representation consists of a single spin state that is unchanged by a
rotation; that is, a spin-0 object.

2 We’ve discussed the two-dimensional representation a bit already. This
consists of 2 × 2 matrices that rotate two-component spinors. That is,
they rotate an object that has two spin states: spin-up and spin-down.
This corresponds to a spin-1/2 object.

3 The three-dimensional representation consists of 3×3 matrices that
implement rotations on three-component vectors. This describes a spin-



1 object, which has three possible spin states: spin 1, spin 0, and spin
−1.

Representations of SU(2) exist with dimension equal to any natural number.
A spin ℓ object rotates with SU(2) matrices in the 2ℓ + 1 dimensional
representation, where ℓ is a half- or whole-integer value.

To close this section, let’s apply this insight to calculating the rotation of a
spinor about an axis perpendicular to the direction of spin.

Example 3.1 Consider a spinor in the spin-up state along the ẑ-axis. What is
the spinor after a rotation by an angle ϕ about the x̂-axis?

Solution
The first thing we need to do is to construct the spinor that represents spin-up.
For spin-1/2, the ẑ-component of angular momentum corresponds to the
matrix

(3.49)

Spin-up about the ẑ-axis is represented by a two-component spinor that has
eigenvalue +1/2 when acted on by L̂z. By appropriate normalization, this
spinor just has 1 in the top component and 0 in the lower component:

(3.50)

A rotation about the x̂-axis is implemented by exponentiation of σ1, where

(3.51)

Note that the square of this matrix is just the identity:

(3.52)

Therefore, the matrix that implements the rotation is



(3.53)

That is,

(3.54)

Acting this matrix on the spinor, we find

(3.55)

For a rotation angle of ϕ = 0, this of course does nothing to the spinor.
However, a rotation by ϕ = π flips the spin from spin-up to spin-down. As
observed earlier, the spinor only returns to itself after rotation by ϕ = 4π.



3.3 Isospin and the Quark Model
Particle physics, such as it was, was becoming a more mature field in the
1930s. The neutron was discovered by James Chadwick in 1932, 4 about 20
years after the discovery of the proton by Ernest Rutherford.5 The discovery
of the neutron enabled the first quantitative understanding of atomic nuclei
and consequences of extracting energy from them. Scientists at the time
noted that there were some very interesting similarities between the proton
and the neutron. From the PDG, some properties of protons and neutrons are
summarized in Table 3.1.

Table 3.1 Proton and Neutron Properties

Some of these things are eerily similar: both protons and neutrons are spin-
1/2 particles and their masses differ by about 2 MeV (about 1 part in 500).
Some of these things are not: to the best of our knowledge, the proton is
stable; its lifetime is at least 1029 years, while the neutron decays in about
900 seconds, or 15 minutes. (When bound in a nucleus, the neutron is stable;
when it is isolated, it can decay.) These times differ by a factor of about 1034.
However, for times relevant for particle physics, 900 seconds is a really long
time. For a neutron traveling near the speed of light, this corresponds to a
distance of about 3 × 1011 meters, or about the distance between the Earth
and the Sun. So, for particle physics, 900 seconds is essentially an infinite
amount of time.

The other thing that differs between protons and neutrons is their electric
charge. This is of course very important for chemistry, but depending on the
questions we ask in particle physics, this may be irrelevant. For now, let’s
ignore the difference of charges of protons and neutrons. Another way to say
this is to imagine a universe where electromagnetism doesn’t exist. In this
universe, protons and neutrons would be identical. That is, we could change



all protons to neutrons and vice-versa and everything would be the same.
While we don’t live in this universe, we approximately live in this universe.
It will be useful to study this approximate symmetry between protons and
neutrons.

3.3.1 Isospin
With these observations after the discovery of the neutron, Werner
Heisenberg proposed an approximate symmetry between protons and
neutrons, later called isotopic spin, or isospin.6 (Isospin, despite the name,
has nothing to do with the spins of protons and neutrons.) Let’s figure out
what this isospin is. Protons and neutrons are described quantum
mechanically as wavefunctions, which we will denote with the bra-ket
notation as |p〉 and |n〉, respectively. These ket wavefunctions are normalized
with the corresponding Hermitian conjugate bra:

(3.56)

The symmetry between protons and neutrons means that any linear
combination of their wavefunctions describes the same physics.

We will call a generic linear combination a nucleon state, denoted by |N〉,
where

(3.57)

a and b are complex numbers which are constrained by demanding that the
nucleon wavefunction is also normalized:

(3.58)

That is, a and b represent the probability amplitudes for the nucleon to be in
the proton and neutron states, respectively. Any other linear combination of
the proton and neutron can be implemented by a linear operator; let’s call it
Û. As it is a linear operator it can be represented by an outer product of
proton and neutrons kets with bras:

(3.59)



where α, β, γ, δ are some complex numbers. To see the power of this notation,
let’s act Û on the proton:

(3.60)

Identifying α with a and δ with b, we see that the operator Û can produce an
arbitrary nucleon state by acting on the proton. A similar result is found by
acting on the neutron.

So far, the α, β, γ, δ coefficients in Û are unconstrained; let’s see what
constrains them. Û must preserve the normalization of the nucleon state |N〉 to
ensure that the total probability is unity:

(3.61)

or that Û† Û = Î is just the identity operator. Acting on any state, the identity
operator Î just returns that state, and so is

(3.62)

This requirement forces Û to be unitary and, because it acts on a linear
combination of two states, the set of all such Û forms the group U(2),7 the set
of all 2 × 2 unitary matrices. As should be usual by now, we will further
restrict the Û operator to have determinant 1; in terms of the coefficients α, β,
γ, δ, this is the restriction that αβ −γδ = 1. The set of all such Û then form the
group SU(2) (which is the reason for the name isospin).

In this universe where there is an exact SU(2) isospin symmetry between
protons and neutrons, Noether’s theorem tells us that in reactions involving
protons and neutrons, isospin is conserved. Of course, this isn’t our universe,
but in processes where the differences between protons and neutrons are
irrelevant (or not dominant), we do expect isospin conservation. In particular,
as long as we study protons and neutrons in a way that doesn’t involve
electromagnetism or don’t care about the neutron decay, then isospin should
be conserved. In addition to other conservation laws we have identified,
isospin will help constrain particle interactions. You’ll see how this works in
Exercise 3.8.

Now, let’s go in a different direction from the groups we’ve studied so far.



Most of our attention has been focused around representations of symmetry
groups of the smallest dimension. For example, we analyzed rotations of
spin-1/2 spinors, which transform under the two-dimensional representation
of the rotation group. Correspondingly, the proton and neutron transform as a
two-dimensional representation of isospin, appropriately referred to as an
isospin doublet. Higher-dimensional representations of these groups exist,
but they have the property that they can be formed from the smallest-
dimensional representation. As such, the smallest-dimensional representation
of a group is called the fundamental representation. To see how this works,
let’s study how a state with two nucleons transforms under isospin.

Example 3.2 Let’s consider the system that consists of two nucleons (protons
or neutrons), which we denote generically as N. We will denote the
wavefunction of two nucleons as |NN〉. How does this di-nucleon state
transform under SU(2) isospin transformations?

Solution
So, what are we working with? The possible nucleon combinations are

(3.63)

where the first entry is nucleon 1 and the second is nucleon 2. A generic di-
nucleon state will be some linear combination of these basis states. These
states are orthonormal and the notation employed here is somewhat of a
shorthand. The di-proton state |pp〉, for example, is more fully represented as

(3.64)

where the subscripts denote the appropriate nucleon. When taking an inner
product with this notation, we only contract nucleon 1 with nucleon 1, and
nucleon 2 with nucleon 2. Explicitly, we have, for example,

(3.65)

The isospin operator Û accordingly acts on each nucleon individually.
Let’s see what happens if we isospin transform the linear combination

a|pn〉 + b|np〉. This transforms according to Û defined in Eq. 3.59 as



By appropriate choice of a and b, this transformation is extremely simple.
Let’s choose b = −a, which then eliminates the |pp〉 and |nn〉 states:

The quantity αβ − γδ is just the determinant of Û, which is 1 in the group
SU(2). Further, demanding that the state a|pn〉 − a|np〉 be normalized fixes 

 Therefore, this transformation law is very simple:

(3.67)

The fact that there is a “−” sign after the transformation means that we refer
to this anti-symmetric combination as odd. Because it transforms to itself, it
is a one-dimensional representation, also called a singlet.

There is another linear combination of |pn〉 and |np〉 that can be formed that
is orthogonal to the singlet. It is

(3.68)

Let’s see how this transforms under an isospin transformation:

(3.69)

While this doesn’t transform into itself, it does transform to the combinations

(3.70)

Under any isospin transformation these three combinations transform into
linear combinations of one another. That is, they are closed under isospin and
form another representation. Because there are three combinations of
nucleons, this is a three-dimensional representation, or a triplet. Note that
this is symmetric under exchange of nucleons 1 and 2.



Therefore, we have shown that the state that consists of two nucleons |NN〉
decomposes into the singlet and triplet representations as shown in Table 3.2.

Table 3.2 Isospin Decompositions

By the way, deuterium (hydrogen with a proton and a neutron in the
nucleus) corresponds to either the singlet or the symmetric combination of
|pn〉 and |np〉, depending on the spin of the deuterium nucleus.

This example shows how we can construct higher-dimensional
representations from products of the fundamental representation. This is often
expressed in direct product and direct sum notation. Because the fundamental
representation of SU(2) isospin is two-dimensional it is often denoted as 2.
Correspondingly, the one- and three-dimensional representations are 1 and 3,
respectively. We have shown that

(3.71)

In this expression ⊗ means direct product (as in multiplying two nucleon
wavefunctions together) and ⊕ is the direct sum (as in a general linear
combination of the singlet and the triplet). The factors of  that appear
in the decomposition of Table 3.2 are called Clebsch–Gordan coefficients.
They tell you how to take linear combinations of the original states to
construct other representations.

Further, this example illustrates irreducible representations, or irreps for
short. In acting with an isospin transformation, we separated out the singlet
and triplet contributions. This was well defined because each transformed
exclusively into itself, or was closed under isospin transformations. Irreps are
the smallest set of states of a representation of a given dimension that is
closed under the action of the symmetry group. Other examples of irreps that
we’ve seen already are representations of the spin group, SU(2), which
correspond to all those states with a total given spin.



3.3.2 What is a “Particle”?
With the title of this book containing the word “particle,” you might think
that the meaning of this term is well understood. Indeed, this word has
already been used extensively in this text, but only now are we ready to
define it properly. A “particle” in particle physics has a technical, quantum
mechanical definition, and requires knowledge of the representations of
symmetry groups under which it transforms. To see what this means, let’s list
a few desirable properties of the definition of a particle:

The definition of a particle should not depend on its velocity. That is, a
particle at rest and one that is moving (but otherwise identical) are the
same particle.
The definition of a particle should not depend on the choice of
coordinate axes. That is, a particle with a given direction of its spin and
one whose spin is at a relative angle (but otherwise identical) are the
same particle.

While the considerations listed here are just related to the Lorentz
transformation properties of a particle, this suggests a more general
definition. We’ll provide the definition first, and then work to unpack and
understand it in the rest of this section.

Box 3.1 Definition of a particle

A particle (in particle physics) is an object that is localized in space and
whose intrinsic properties are unchanged under the action of any symmetry
group. That is, a particle is defined by the irreps under which it transforms.

Going back to the very beginning of this chapter, where we discussed the
symmetries of an equilateral triangle, this definition of a particle is consistent
with the colloquial definition of “equilateral triangle.” An equilateral triangle
doesn’t depend on how you label the vertices, and anyway the action of S3
mixes the vertices. Because the equilateral triangle has three vertices that are
mixed with S3, it transforms under the three-dimensional representation of S3.
Therefore, one unique way to define an equilateral triangle is as the object



that transforms under the three-dimensional irrep of S3. You’ll explicitly
construct this irrep in Exercise 3.1, as well as studying another irrep of S3.

To see how this definition works for honest particles, let’s consider its
consequences for the electron, e−. We’ll denote the wavefunction of the
electron as |e− 〉. We can measure the energy and momentum of the electron
by acting with the momentum operator, ˆPμ = i∂ μ. The electron is an
eigenstate of the momentum operator, with eigenvalue equal to its four-
momentum pμ :

(3.72)

The four-momentum pμ is of course not Lorentz invariant, so we can’t define
an electron by its particular four-momentum. However, we can construct a
Lorentz-invariant operator by acting again with P̂μ :

(3.73)

The mass of the electron me tells you how the electron’s energy and
momentum are affected by a Lorentz boost with velocity β. So, the
eigenvalue under the action of ˆPμ ˆPμ defines a property of the electron
particle. Equation 3.73 is of course nothing more than the Klein– Gordon
equation.

The electron also has spin, and the measured value of spin depends on the
choice of coordinate axes. Regardless of the choice of coordinates, the
electron, as a spin-1/2 particle, always has two possible spin states. This
number of possible spin states of the electron is unchanged by rotations.
What operator can we construct that measures the number of spin states? This
situation isn’t so different from a typical vector like position, for example. A
position vector  of course isn’t rotation invariant; however, its
magnitude is. The magnitude is defined by the Pythagorean theorem:

(3.74)

For spin operators Ŝx, Ŝy, Ŝz, this suggests that the squared-spin operator

(3.75)



is rotation invariant and measures the “magnitude” of the electron spin.
If Ŝ2 is invariant to rotations, it must commute with all spin operators. For

the electron, the spin operators are just the Pauli spin matrices, and it is easy
to explicitly construct Ŝ2. As mentioned earlier, the square of any of the Pauli
spin matrices is just the 2 × 2 identity matrix I, so

(3.76)

The identity matrix of course commutes with any matrix. This sum-of-
squares operator is called the Casimir of the representation and is unique to
the particular representation of the symmetry group. Acting the spin Casimir
on the electron wavefunction, this produces

(3.77)

Here, s is the value of the electron spin, s = 1/2. That the value of the Casimir
is s(s+1) we won’t prove here, but this will be studied in more detail in
Chapter 8. Another interpretation of the fact that the Casimir is proportional
to the identity is that, regardless of whether the electron has spin-up or spin-
down, the value of the Casimir is always the same.

Continuing, one can construct a charge operator Ĉ which measures the
charge of the electron. We won’t do that here, but we note that its eigenvalue
when acting on the electron wavefunction is

(3.78)

where e is the fundamental unit of charge. This is invariant to the action of
any symmetry.

To summarize, we have identified operators whose eigenvalues identify
the irreps of symmetry groups under which the electron transforms. The
operators are called the Casimirs, and commute with every element of the Lie
algebra of the symmetry group. The eigenvalues of the Casimirs are referred
to as a particle’s quantum numbers and the collection of them for all
symmetry groups uniquely identifies the particle. For the electron, we present
the quantum numbers corresponding to the mass, spin, and charge



assignments in Table 3.3. Eugene Wigner initiated this definition of a
particle, by identifying the irreps and quantum numbers of the momentum
operator and Lorentz transformations. This is now called Wigner’s
classification.8

Table 3.3 Electron Quantum Numbers

3.3.3 The Quark Model
The power of this group theory construction of particle physics is that it
enables concrete predictions for the fundamental constituents of matter.
Perhaps the most profound prediction from this group theory approach was
with the construction of the quark model. In Exercise 1.2 in Chapter 1, we
estimated the mass of the pion. There are actually three pions, denoted as π+,
π−, and π0, with +e, −e, and 0 electric charge, respectively. Like the proton
and neutron, these pions have eerily close masses:

(3.79)

Their charge does distinguish them, but we can imagine a universe where
electricity and magnetism are turned off. This is suggestive of the pions
forming a triplet of isospin, as we saw with pairs of protons and neutrons.
However, because the masses of protons and neutrons are much larger than
those of the pions, the pions cannot consist of pairs of nucleons. Therefore, if
they do form a triplet of isospin, they must consist of things more
fundamental than protons and neutrons. This expectation is consistent with
the triplet arising from a product of doublet representations of isospin. So,
pions could consist of pairs of particles that are doublets of isospin.

In the 1950s and 1960s more and more particles like the pions, collectively
called hadrons, were discovered and interesting relationships between them
were identified. Beyond SU(2) isospin, it was realized that there was a larger
SU(3) group structure to the pattern of hadrons. This symmetry is called
SU(3) flavor. Murray Gell-Mann (though he was not aware of it at the time)



had organized the measured hadrons in what he called the Eightfold Way,
which corresponded to the irreps of SU(3) flavor. 9 For example, one set of
hadrons is called the baryon octet and consists of:

The masses of particles in MeV are in parentheses, with increasing masses
going down. All particles along negatively sloped diagonals have the same
electric charge q. A quantity called strangeness s also changes going down,
with the top row having strangeness s = 0, the middle row strangeness s = −1,
and the bottom row strangeness s = −2.

This octet is an eight-dimensional representation of flavor SU(3). Like the
pion triplet of SU(2) isospin, it is not the fundamental representation of
SU(3), as that would be three-dimensional. In fact, representations of flavor
SU(3) corresponding to sets of hadrons of all stripes were observed, such as
the octet and the ten-dimensional representation called the decuplet, for
example. However, the fundamental representation of this symmetry was
never observed. With this and other evidence, Gell-Mann and George Zweig
theorized that there were fundamental particles whose different combinations
produced the zoo of hadrons.10 Because the observed flavor group was
SU(3), they predicted that there were just three fundamental particles that
were responsible for everything. Gell-Mann called them quarks,11 after the
poem in James Joyce’s novel Finnegans Wake:12

–Three quarks for Muster Mark!

Sure he hasn’t got much of a bark



And sure any he has it’s all beside the mark.

These three quarks were named up (u), down (d), and strange (s). The pions,
for example, consist of up and down quarks in the following combinations:

(3.80)

where ū is the anti-up quark. A beautiful application of fundamental
mathematics leading to discovery of new physics!

We now know of six quarks, the evidence for which we’ll discuss
throughout the rest of this book.



3.4 Why the Photon Has Two Polarizations
We’ll end this chapter on group theory in particle physics by addressing a
question that was raised in the previous chapter, but from a new perspective.
In Section 2.2.3, we discussed electromagnetism, but couched in a language
centered around the photon and its properties. There, we mentioned that the
photon has two polarizations, or, equivalently, two spin states. This is the
same situation as for the electron: the electron has two spin states (spin-up
and spin-down), and yet the electron is spin-1/2 while the photon is spin-1.
However, as the photon is spin-1, it naïvely transforms according to the
three-dimensional representation of the spin group. Thus, for a spin 1 particle
like the photon, we should expect three spin states, not two. So, what gives?

The reasoning behind this requires an understanding of the consequences
of special relativity for the properties of the photon. The photon is a massless
particle, unlike the electron, and it is this masslessness that is responsible for
the effective elimination of one spin state. Let’s first consider the case of a
massive particle, like the electron. We will also need to assume that the
particle is point-like, and has no spatial extent. This is true for the electron,
and in fact true for all particles of the Standard Model; no intrinsic length
scale has been measured for any of the particles of the Standard Model. For
composite particles, like the proton, we work in the regime in which the
proton appears point-like. That is, we imagine only probing the proton with
wavelengths that are long as compared to its Compton wavelength.

With these assumptions, the only thing around to describe the dynamics of
a massive particle is its momentum four-vector. As we are considering
massive particles, we can boost to a frame in which the particle is at rest:

(3.81)

Here, m is the mass of the particle. This frame makes the analysis that follows
clear, but Lorentz invariance implies that it must hold in any other frame. In
this representation, this four-vector has a large amount of symmetry. Because
the three-momentum of this particle at rest is just the  vector, we can, with
impunity, rotate the spatial coordinates into one another with a 3 × 3 matrix
M. Because M implements a symmetry transformation on the particle’s four-



momentum, it must be an appropriate Lorentz transformation. The matrix M
can therefore be expressed in terms of the Lie algebra of the rotation group,
so(3). The three elements of the Lie algebra corresponding to the three
independent rotational directions of a point-like massive particle are
illustrated in Fig. 3.3.

Fig. 3.3 The rotational symmetry of a massive particle. Because we can Lorentz boost to its rest frame,
there are three independent axes about which we can rotate.

As discussed earlier, if this is a particle, it transforms as an irrep of the spin
group, SU(2), the members of which are classified by an integer or half-
integer value of spin: 0, 1/2, 1, 3/2, 2, etc. All massive particles that we have
measured indeed have a definite spin which defines its properties under
rotation. For example, the Higgs boson is a spin-0 or scalar particle, the
electron is a spin-1/2 particle with two spin states, and the rho meson has
spin-1 with three spin states. For massive particles, our understanding of spin
states indeed aligns with our more familiar non-relativistic quantum
mechanics intuition.

Now for a massless particle like the photon. Unlike with massive particles,
there is no Lorentz transformation that can be performed to boost a massless
particle into a frame where its four-momentum is of the form

(3.82)

This would imply that the particle has mass E, which must be non-zero if the
particle has non-zero energy. For a massless particle, the frame in which the
four-momentum is simplest is when the three-momentum is aligned along the
ẑ-direction:

(3.83)

This four-vector is indeed massless with energy E. Going through a similar
analysis as with the massive particle, we find that the symmetries of this four-



vector correspond to the group SO(2), as we can only rotate two axes, x̂ and
ŷ, into one another and leave this four-vector unchanged. SO(2) is identical to
U(1) as a group and, unlike SU(2), it is also an Abelian group. Additionally,
an element of SO(2) is specified by a single number which represents the
corresponding rotation angle. For these reasons, the irreps of SO(2), which
would correspond to different particles, are all one-dimensional. By the way,
this SO(2) symmetry that leaves massless four-vectors unchanged is called
the little group. The single rotational direction of a massless particle that
leaves its four-vector invariant is illustrated in Fig. 3.4.

Fig. 3.4 The rotational symmetry of a massless particle. Because we cannot Lorentz boost to its rest
frame, there is only one independent axis about which we can rotate.

This has profound consequences for the physical polarization states of the
photon. Because all irreducible representations of the SO(2) little group are
one-dimensional, this means that massless particles have only one accessible
spin state, regardless of the intrinsic spin of the particle. A massless particle
always travels at the speed of light, and so its three-momentum is non-zero
for any non-zero energy. Therefore, a massless particle has an intrinsic axis
about which to quantize spin. That is, this one spin state can be specified by
the projection of spin onto the axis defined by the three-momentum of the
massless particle. This spin projection is called the particle’s helicity. The
magnitude of this projection of the spin onto the three-momentum axis is not
so important; it is just determined by the intrinsic spin of the particle.
However, the sign of the projection can be positive or negative; that is, the
spin can be aligned with the three-momentum or it can be anti-aligned with
the three-momentum. The sign of helicity of a massless particle is Lorentz
invariant: there is no Lorentz transformation that you can perform to change
the sign of helicity. This is unlike a massive particle, for which a rotation will
change the projection of spin on any axis.

We say that the particle has positive helicity if the spin and three-
momentum are aligned, and negative helicity if they are anti-aligned. These
two spin or polarization states are all that are possible for a massless particle.



When we discussed the polarization states for the photon we referred to them
as right- and left-handed. Right-handed helicity just means that the spin of the
photon is aligned with the three-momentum according to the right-hand rule,
and analogously for left-handed.

It may seem that we could in principle just consider massless particles with
only one helicity. In fact, this turns out to be inconsistent with quantum
mechanics. First, according to the rules of quantum mechanics, everything
that is not expressly forbidden is mandatory, and unless there is a mechanism
for forbidding one helicity, then both necessarily are present. There is a deep
and fundamental result in quantum field theory called the CPT theorem,
which states that only if the Lorentz-invariant Hamiltonian of a system is
invariant under the combined action of charge conjugation (C), parity
transformation (P), and time reversal (T) is that Hamiltonian actually
Hermitian, and so has real eigenvalues. The combined action of CPT on a
right-handed helicity photon transforms it into a left-handed helicity photon,
and vice-versa. Therefore, for the Hamiltonian of a quantum system to be
Hermitian, we must require that both left- and right-handed helicities of
massless particles be present. We will discuss charge conjugation, parity
transformation, and time reversal in more detail in Section 10.2.

Effectively, the action of CPT is complex conjugation. Demanding that the
combined action of CPT on the Hamiltonian Ĥ is a symmetry then imposes
that Ĥ = Ĥ†, which is indeed the statement of Hermitivity. If Ĥ is Hermitian,
then every state and its complex conjugate must be present in the Hilbert
space of the theory. Recall that when we introduced photon polarization
states in Section 2.2.3, we showed that right-handed polarization is the
complex conjugate of left-handed polarization (and vice-versa):

(3.84)

Therefore, if a right-handed photon state exists in the Hilbert space, then by
the CPT theorem or equivalently the Hermitivity of the Hamiltonian, the left-
handed photon state must exist as well.



Exercises
3.1 Representations of the Symmetric Group. The group of symmetries of

the equilateral triangle discussed at the beginning of this chapter can
be represented with matrices. Because the transformations of the
triangle were just manipulations of a two-dimensional plane, this
symmetry group is a subgroup of O(2). In this exercise, we will study
the representations of this group, S3.

(a) Consider a three-dimensional vector with entries a, b, and c:

(3.85)

Let a correspond to vertex 1 of the triangle, b correspond to
vertex 2, and c correspond to vertex 3. Construct the six matrices
that implement the six unique symmetries of the triangle. For
example, the matrix

(3.86)

implements a 120◦ clockwise rotation:

(3.87)

(b) In part (a), you constructed the three-dimensional representation
of the symmetric group, S3. However, this is not the fundamental
representation. Construct the six 2 × 2 matrices that correspond
to the exact same group operations, S3, and therefore to the two-
dimensional representation. These matrices act on a two-
dimensional vector,



(3.88)

where x and y represent the horizontal and vertical components,
respectively. To construct the matrices, note the following
properties. Three of the matrices correspond to rotations in the
plane by 0◦, 120◦, and 240◦. Another matrix flips about the
vertical axis and sends x to −x, or, in terms of the triangle, flips
about vertex 1. The other two flip matrices can be found by
composing an appropriate rotation with the flip about vertex 1.

3.2 Lorentz Group. From the defining requirement that a Lorentz
transformation implemented by a matrix Λ leave the metric invariant,

(3.89)

prove that the set of such matrices {Λ} form a group.
3.3 Hermitian Matrices. A Hermitian matrix M is one for which it is

equal to its Hermitian conjugate:

(3.90)

(a) Prove that Hermitian matrices have real eigenvalues. That is, for
an eigenvector  of a Hermitian matrix M prove that eigenvalue
λ is always real:

(3.91)

(b) Assume that a Hermitian matrix M has two eigenvectors  and 
 with eigenvalues λ1 and λ2, with λ1 ≠ λ2. Prove that  and 

are orthogonal; that is, 

3.4 Baker–Campbell–Hausdorff Formula. In this chapter we introduced
the Lie algebra as the basis of unitary representations of a group. An
element of a group is constructed by exponentiating a matrix T in the
Lie algebra:



(3.92)

What is the multiplication law of exponentiated matrices? That is, for
two matrices T1 and T2, determine the matrix T3 such that

(3.93)

Find T3 up through quadratic order in matrices T1 and T2.
Hint: Express T3 as

(3.94)

and Taylor expand to quadratic order in the matrices T1 and T2.

3.5 Casimir Operator. In this chapter, we introduced the Casimir operator
as the object that measures the irrep under which a particle
transforms. For the spin group, the Casimir Ŝ2 is defined as

(3.95)

Using the Lie algebra of the spin group

(3.96)

show that the Casimir commutes with all elements of the Lie algebra:

(3.97)

3.6 Helicity. In Section 2.2.3, we constructed the right- and left-handed
polarization vectors for the photon. For momentum p = (E, 0, 0, E),
they were

(3.98)

These polarization vectors are eigenstates of the little group, SO(2).
Perform an SO(2) rotation in the x̂ŷ plane by an angle ϕ and determine
the eigenvalues of these polarization vectors. What are the



eigenvalues? Which polarization vector rotates with ϕ? Which one
rotates oppositely? What happens to the polarization vectors after
rotation by ϕ = 2π?

3.7 Symplectic Group. The symplectic group Sp(N) consist of those N × N
matrices M with determinant 1 that leave an off-diagonal matrix
invariant:

(3.99)

Here, I is the  identity matrix; therefore, N must be even.
Sp(2) are just those 2 × 2 matrices M that satisfy

(3.100)

(a) Prove that Sp(N) is a group.
(b) Now, study the group Sp(2). What are the properties of the

matrices M in Sp(2)? Have we seen this group before?

3.8 π-p Scattering. We are able to estimate the relative rates of
interactions between different isospin multiplets with the
corresponding Clebsch–Gordan coefficients. In this chapter, we
introduced Clebsch–Gordan coefficients for determining the
decomposition of product isospin states into irreps of isospin. In
practice, the procedure for determining the Clebsch–Gordan
coefficients is to simply look them up in a table. A nice table of
Clebsch–Gordan coefficients is located in the PDG. Go to the PDG
website, click on “Reviews, Tables, Plots” and then scroll down to
“Mathematical Tools.” From there, you can click on the link to the
Clebsch–Gordan coefficient tables. In the following questions, we
will use these tables to estimate relative pion–proton scattering rates.

To see how these tables work, look at the 1/2 × 1/2 table.
Horizontally, the rows correspond to the coefficients of combining an
isospin-1/2 state with an isospin-1/2 state with the corresponding
eigenvalue of the third component of isospin at the left. An isospin



doublet, like the nucleons, is an isospin-1/2 state, while the isospin
triplet is an isospin-1 state. For example, consider looking for the
coefficient of the isospin-1 and I3 = 0 combination of a proton (I3 =
1/2) and a neutron (I3 = −1/2). This is found by looking at the
following row and columns:

(3.101)

The I3 = 0 state is the symmetric combination of the proton and
neutron in the isospin triplet (the middle entry in the isospin triplet
from Table 3.2). There is an implicit square-root for every entry of the
table, so the coefficient of this term is  which is exactly what we
found in Example 3.2.

(a) The proton and neutron are in the isospin I = 1/2 doublet with I3
= 1/2 and I3 = −1/2, respectively, while the pions are isospin I =
1 with I3 = 1 for π+, I3 = 0 for π0, and I3 = −1 for π−. Determine
the Clebsch–Gordan coefficients for the combinations:

(i) π0 n in the I = 3/2, I3 = −1/2 state
(ii) π− p in the I = 1/2, I3 = −1/2 state

(iii) π+ p in the I = 3/2, I3 = 1/2 state.

(b) The Δ baryon is a particle that is similar to a proton or a neutron,
but in an excited state configuration of up and down quarks. It
has isospin I = 3/2. From the Clebsch–Gordan table, estimate the
ratio of the probability that the scattering of a proton and a π+

produces a Δ baryon versus a proton and a π−.
(c) Figure 3.5 is a plot of the relative scattering probability for pion–

proton collisions for a range of pion–proton center-of-mass
collision energies, measured in MeV. π+ p results are solid and π
− p results are dashed. What is the minimum value that the mass
of the pion–proton system can have? Is this consistent with the



plot?

Fig. 3.5 Relative probability for scattering of π+ p and π− p as a function of the pion–proton
center-of-mass collision energy, Ecm. This plot was constructed from hadron resonance data
from the PDG.

(d) On this plot, the Δ baryon corresponds to the peak (resonance) at
1232 MeV. From this plot, estimate the ratio of the probability
for π+ p scattering to produce a Δ versus π− p scattering. How
does this compare to your result in part (b)?

3.9 Research Problem. Why do groups and their structure describe
physical phenomena so well? You might want to start with reading E.
P. Wigner, “The unreasonable effectiveness of mathematics in the
natural sciences,” Comm. Pure Appl. Math. 13, no. 1, 1 (1960).

1 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der
Atomspektren, Vieweg (1931).

2 B. Peon, “Is Hinchliffe’s rule true?,” submitted to Annals Gnosis.
3 This is almost true. A symmetry in quantum mechanics could also be implemented by an anti-

unitary operator. Such an operator still preserves probability, but also complex conjugates the
object that it acts on. We’ll study this in Chapter 10.



4 J. Chadwick, “Possible existence of a neutron,” Nature 129, 312 (1932).
5 E. Rutherford, “The scattering of alpha and beta particles by matter and the structure of the

atom,” Phil. Mag. Ser. 6 21, 669 (1911).
6 W. Heisenberg, “On the structure of atomic nuclei,” Z. Phys. 77, 1 (1932).
7 We still haven’t found what we’re looking for, however.
8 E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Annals Math.

40, 149 (1939) [Nucl. Phys. Proc. Suppl. 6, 9 (1989)].
9 M. Gell-Mann, “The Eightfold Way: A theory of strong interaction symmetry,” CTSL-20, TID-

12608. See also Y. Ne’eman, “Derivation of strong interactions from a gauge invariance,” Nucl.
Phys. 26, 222 (1961).

10 M. Gell-Mann, “A schematic model of baryons and mesons,” Phys. Lett. 8, 214 (1964); G.
Zweig, An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Version 1, CERN-
TH-401, CERN (1964); G. Zweig, “An SU(3) model for strong interaction symmetry and its
breaking: Version 2,” in Lichtenberg, D. and Rosen, S. (eds), Developments in the Quark
Theory of Hadrons, Vol. 1, pp. 22–101.

11 Quark is also a fresh acid-set cheese, but not the eponym of the fundamental particle.
12 Excerpt from FINNEGANS WAKE: CENTENNIAL EDITION by James Joyce, copyright ©

1939 by James Joyce, copyright renewed © 1967 by Giorgio Joyce and Lucia Joyce. Used by
permission of Viking Books, an imprint of Penguin Publishing Group, a division of Penguin
Random House LLC. All rights reserved. Any third party use of this material, outside of this
publication, is prohibited. Interested parties must apply directly to Penguin Random House LLC
for permission.
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Fermi’s Golden Rule and Feynman Diagrams

Golden Rule #1: Do unto others as you would have them do unto you.

The foundation of civilization.

Golden Rule #2: The transition rate from an initial to a final state in
quantum mechanics is the matrix element squared of the Hamiltonian
times the density of states.

The foundation of predictions in particle physics.1

Special relativity and applications of group theory aren’t sufficient alone to
study particle physics. We need to couch them within the framework of
quantum mechanics, especially as applied to experiments like the LHC. Our
primary experimental tool in particle physics is colliding particles and
observing the detritus that comes from it. Quantum mechanically, we cannot
say for certain what the outcome of any given particle collision will be, but
we can determine the probability of a particular collision. Just as in non-
relativistic quantum mechanics, the probability that a given pair of particles
interacts and produces a collection of particles from the collision is controlled
by the overlap of the initial state with the final-state wavefunctions. So, we
need to develop a method for calculating these wavefunction overlaps and
extracting corresponding probabilities.

Probability is a dimensionless quantity; it is just a number between 0 and
1. However, this makes it extremely subtle because it is absolute. To
calculate the probability of the outcome of any given particle collision means
that we need to know all possible outcomes a priori. In quantum mechanics,
this is essentially the statement that the eigenstate basis for a given potential
is complete: it can describe any potential outcome of an experiment.
Unfortunately, this is effectively impossible in particle physics because the
number of final states is uncountably infinite and (in most cases) the set of



final states is not even fully known. With this motivation, we want to find a
quantity whose value represents relative probability, but is not strictly
connected to an absolute scale. We’ll find the notion of cross section and the
corresponding barn unit to be a particularly physically appealing solution to
this problem.

Starting from the introduction of the barn in this chapter, we work
backward from the observation of outcomes of collision events, to counting
the possible final states consistent with our particular measurement, to
calculating wavefunction overlaps in particle physics.



4.1 Invitation: The Barn
Let’s consider what happens in collisions at the Large Hadron Collider.
Protons are collided at high energies and we observe what comes out. This is
a quantum mechanical process, so all we can predict is the probability that
protons will interact and produce a particular final state, and not exactly what
will result from each proton collision. So, we want to define a unit that is a
measure of this scattering probability. Let’s imagine watching the protons
collide. Immediately before they collide, it would look something like this:

Protons are Lorentz contracted into pancake shapes from their spherical shape
at rest. The lines trailing each proton are an admittedly poor representation of
the blur as the protons zoom past near the speed of light.

What property of the proton controls the probability of interaction? This
drawing makes it clear that the size of the proton is clearly important.
However, the radius of the proton is hard to define; we can’t just measure it
with a ruler. One very useful way to define the radius of the proton is as
(effectively) the radius at which the electric field of the proton is largest. This
definition is called the charge radius and has a nice analogy in classical
electromagnetism. The electric field of a spherical shell of charge is
maximized when you are on the surface of the shell, by Gauss’s law. The
charge radius of a spherical shell is therefore just its radius.

Another way to define the size/radius of the proton is through its rate of
interacting with itself or other particles. For example, if you strapped yourself
on a proton that was traveling toward another proton for collision, you would
see something like this:



That is, you would see a cross-sectional area of the proton. The larger this
area is, the more likely it is that you will interact with it. The smaller the area,
the less likely to interact.

This motivates a connection between proton size and scattering
probability. In particle physics, a collision or interaction rate is expressed in
effective cross-sectional area, typically just called cross section. As an
“area,” we can measure scattering cross sections as the square of some
relevant length scale. Interestingly, this is not what is typically done in
particle physics.

Box 4.1 Historical Profile: The Unit of the Barn

The origin of the name barn is quite amusing and its history is recounted
in a letter to the editor in Physics Today:2

The tradition of naming a unit after some great man closely associated
with the field ran into difficulties since no such person could be
brought to mind. Failing this, the names Oppenheimer and Bethe were
tried, since these men had suggested and made possible the work on
the problem with which the Purdue project was concerned. The
“Oppenheimer” was discarded because of its length, though in
retrospect “Oppy” or “Oppie” would seem to be short enough. The
“Bethe” was thought to lend itself to confusion because of the
widespread use of the Greek letter. Since John Manley was directing
the work at Purdue, his name was tried, but the “Manley” was thought
to be too long. The “John” was considered, but was discarded because
of the use of the term for purposes other than as the name of a person.
The rural background of one of the authors then led to the bridging of
the gap between the “John” and the “barn.” This immediately seemed
good and further it was pointed out that a cross section of 10−24 cm2

for nuclear processes was really as big as a barn. Such was the birth of



the barn.

If we want to define the cross section of something at human scales, we
would express it in square meters or perhaps square centimeters. For
example, the cross section of a baseball is about 45 cm2, while the “meat” of
a baseball bat is about 150 cm2, which are both nice numbers. Square
centimeters are less useful in particle physics. For the proton, with a radius of
about 10−15 m (or 10−13 cm), it has a cross section of about 10−26 cm2. This is
a tiny exponent that can be annoying to lug around. As with the development
of natural units from Chapter 1, we want a measure of cross section that
respects the scales of subatomic physics.

The standard unit of cross section in particle physics is called the barn.
During World War II, when scientists were working on the atomic bomb, it
was very important to understand the cross section of uranium (i.e., the
probability that uranium interacted with itself), and they wanted to name an
appropriate unit for this cross-sectional area. Correspondingly, the barn unit
is approximately the cross-sectional area of a uranium nucleus, 10−24 cm2. In
these units, the cross-sectional area of a proton is about a hundredth of a barn
or so. In elementary particle physics, the cross sections that we consider are
typically much smaller than a barn, so we often use nanobarns (nb, 10−9),
picobarns (pb, 10−12), femtobarns (fb, 10−15), or even attobarns (ab, 10−18) to
express them. The barn is one of the few quantities in particle physics that is
not within the natural unit system. The history of settling on the word “barn”
for cross section is described in the Historical Profile of Box 4.1.



4.2 Scattering Systematics
Let’s see how we can take this idea of cross section and turn it into a concrete
prediction for the rate of production of a particular final state from particle
collisions. For concreteness, let’s consider colliding protons at the LHC.
Accelerating and colliding individual protons is extremely inefficient; for two
protons to interact you would have to get them to within about a femtometer
of one another. At the LHC, bunches that each contain about 1011 protons
are collided and out of these bunch crossings maybe 20 pairs of protons
actually collide. Let’s analyze the collision of two of these bunches; call one
bunch A and the other bunch B. We can visualize this as:

The velocity of bunch A is vA, and correspondingly vB for bunch B. The
length of each bunch is ℓ and the cross-sectional area of each bunch is A. The

number of protons per unit volume in the bunches (the number density) is nA
and nB for bunches A and B, respectively. Note that the cross-sectional area A

is the size of the bunch, and not the size of an individual proton. For colliding
protons at the LHC, the relevant quantity is the number of collision events
per second, as this will tell us how often protons will collide over the time
that we run the machine. Let’s see how to define this.

As the bunches pass through one another, every proton of bunch B travels
through a region of length ℓ where there are protons (and similarly for bunch
A). The total number of protons NA in bunch A that a slice of the protons in
bunch B sees in one unit of time is

(4.1)



where |vA − vB | is the relative speed of the bunches. Note that |vA − vB | is the
length per unit time of bunch A that passes through bunch B. Multiplying by
A gives the volume per unit time of A that passes through B, and then

multiplying by the number density nA counts the total number of protons that
pass through in a unit time.

The total number of protons in bunch B that could possibly interact with
the protons of bunch A is

(4.2)

That is, the number of B protons that can possibly interact with the protons of
bunch A is given by the number density nB times the total volume of pure
protons in bunch B. This volume is just the length of the bunch multiplied by
the cross-sectional area of each proton, which we denote as σ. The total
number of scattering events per unit time is then the product of these two
factors:

(4.3)

The prefactor nA nB Aℓ|vA − vB | is called the flux factor, and depends on the

precise parameters of the LHC accelerator. The proton scattering cross
section σ is intrinsic to individual proton–proton interactions, and is the same
for protons scattering in the LHC as in the center of the galaxy. Note indeed
that it has units of area. Let’s see what the consequences of the flux factor are
at the LHC.

Example 4.1 What is the approximate value of the flux factor in collisions at
the LHC?

Solution
The flux factor is also called the instantaneous luminosity or just the
luminosity, denoted by L. (Yes, this is the same symbol as for Lagrangian

density but one never uses them in close proximity so there’s no chance for



confusion.) The value of L is

(4.4)

where NA and NB are the numbers of protons in a bunch and Vol is the
volume of a bunch, Vol = Aℓ. The proton–proton scattering cross section σ is

fixed, so to produce as many collisions per second as possible, we need to
make the luminosity as large as possible. This is done in just one way at the
LHC. The number of protons per bunch N is a fixed number:

(4.5)

Further, the velocity of the two bunches of protons is very close to the speed
of light because the energy of protons at the LHC is much, much larger than
the proton mass. As the bunches travel in opposite directions, their relative
speed is essentially twice the speed of light:

(4.6)

Finally, there is the volume factor in the luminosity. Protons at the LHC are
accelerated in bunches in a radio-frequency (RF) electromagnetic field that
has a frequency of 400 MHz. Protons effectively ride along in the “troughs”
of this field and its wavelength therefore sets the length of a bunch. We’ll
analyze how this is done more carefully in Chapter 5, but for now, we will
just set the bunch length ℓ to be half of the wavelength of the RF field:

(4.7)

So far, all of this is fixed. The one thing that is controlled at the LHC to
increase the luminosity is the cross-sectional area of the bunch, A. At

collision points like those in the center of the ATLAS and CMS experiments,
quadrupole focusing magnets are used to squeeze the bunches into an
extremely small region. These focusing magnets squeeze the bunches down



to a radius of 10 micrometers! This corresponds to a cross-sectional area of

(4.8)

Putting this all together, the luminosity of the LHC collisions is

(4.9)

Luminosity is often quoted in units of cm −2 s −1, as done above. It is also
expressed in inverse barns per second. A barn is 10−24 cm2, and so the
calculated luminosity is also

(4.10)

This is a measure of the inverse cross section per second produced in the
experiments at the LHC, and this approximation is a bit of an overestimate of
the luminosity at the LHC. At its peak, the maximum luminosity is only
about 20 nb−1 s−1 = 2 × 1034 cm−2 s−1 at the LHC, as shown in the luminosity
measurements at CMS in Fig. 4.1. The reason for this overestimate is that
proton bunches are only collided every 25 nanoseconds, or 40 million times a
second. That is, only every tenth trough of the 400 MHz RF field is populated
by a bunch of protons, which decreases our estimate of the luminosity by a
factor of ten.



Fig. 4.1 Plot of the proton luminosity as measured at the CMS experiment during 2018. Note that the
luminosity is about 20 nb −1 s−1 throughout the time when the machine was running. Credit: CMS
Experiment, © CERN. Figure reused with permission from
https://twiki.cern.ch/twiki/bin/view/ CMSPublic/LumiPublicResults.

In astrophysics or other fields of physics, the term “luminosity” references
the rate of emission or intrinsic brightness of a stellar object. In particle
physics, this connotation still holds, as the luminosity is the intrinsic
“brightness” of the proton collisions. How often they actually do something,
however, is controlled by their scattering cross section.

For the rest of this chapter we will work to define and learn how to
calculate the proton scattering cross section, σ. A careful and detailed
derivation of the form of the cross section σ requires quantum field theory
and its axioms; here, we will justify the form of the cross section by its
expected properties.

4.2.1 The Scattering Cross Section
When colliding protons, there are two things that we need to define to



determine the probability or cross section for the collision to take place. First,
we need to define what the initial state is; that is, what momenta the colliding
protons have. Second, we need to define what final state we are considering;
that is, what particles are produced in the collision and what their momenta
are. These states are described by wavefunctions with the initial state of

(4.11)

and the final state of

(4.12)

Here, pA and pB are the momenta of the protons in the A and B bunches that
collide, and p1, p2, ..., pn are the momenta of the n particles produced from
the collision. Initial states, or “in” states, exist from time t = −∞ and
propagate forward in time. Final states, or “out” states, are produced from the
collision and propagate out to time t = +∞. Of course, no initial state is
prepared infinitely far in the past, and no final state travels infinitely far into
the future, but these time scales are exponentially longer than the time of
collision. The time over which the collision takes place is approximately the
time that it takes a proton at the LHC to travel the width of a proton, or about
10 −23 s. This is trillions of times smaller than the time it takes for final-state
particles to travel from the collision point to the detectors of the LHC, and so
the infinite past and future limits are not bad approximations.

Examples of scattering processes that we might be interested in include the
collision of protons that produces two positrons,

(4.13)

or two positrons and three photons,

(4.14)

or any collection of particles. In these example reactions, note that electric
charge is explicitly conserved, and energy and momentum are implicitly
conserved. The probability that two protons collided to produce n final-state



particles with momenta p1, ..., pn is the absolute squared inner product of the
wavefunctions:

(4.15)

This inner product has a lot of moving parts that we will work to identify. For
compactness in what follows, we will denote the final state as f, but we’ll
consider explicit final states in a bit.

As discussed earlier, the proton scattering cross section is proportional to
this probability:

(4.16)

Probabilities are dimensionless and cross sections have units of area, so we
need to include the appropriate scales of the problem to get the dimensions
right. This is determined by thinking about how the protons can scatter and
their relevant size, which is sensitive to their de Broglie wavelength.

The de Broglie wavelength of a particle is the distance over which the
particle is coherent; that is, the distance within which the particle’s position is
most likely to be. The de Broglie wavelength λdB is inversely proportional to
the magnitude of three-momentum of a particle:

(4.17)

That is, higher-momentum particles are localized in a smaller region of space,
while low-momentum particles are delocalized (can be “anywhere”). It is
harder for protons with short de Broglie wavelengths to collide because their
wavefunctions only have support in a small region of space, while it is much
easier for protons with long de Broglie wavelengths to interact. Therefore, we
expect the cross section to be proportional to the de Broglie wavelengths of
the two protons:

(4.18)

Now, the right side of Eq. 4.18 has units of area (in natural units), like the



cross section, though we aren’t done yet.
One issue to clear up is what happens as momentum goes to 

This would suggest that the cross section diverges, which is unphysical
behavior. In particular, a proton at rest has an intrinsic size determined by the
Compton wavelength λC :

(4.19)

where m is the mass of the particle. At high momentum, the relevant size of a
particle is its de Broglie wavelength, while at low momentum, its Compton
wavelength is its size. Neither the de Broglie nor the Compton wavelength
interpolates between these regimes, but a distance scale inversely
proportional to the energy of the particle does. This then suggests that the
cross section can be expressed as

(4.20)

The factors of 1/2 come from careful normalization of the initial-state
wavefunctions in quantum field theory.

As a cross-sectional area, σ should also have particular properties under
Lorentz transformations. Let’s remind ourselves about the picture of proton
collision:

Let’s call the axis along which the scattering occurs ẑ. The cross-sectional
areas of the protons then lie in the plane of the x̂ and ŷ axes. Looking at a
proton in a head-on collision we see:



This is clearly rotationally invariant about the ẑ-axis, and it is Lorentz-boost
invariant along the ẑ-axis. That is, the area that you see does not change with
these transformations. We need to make sure that this is true for the
expression for the cross section. The probability

(4.21)

is fully Lorentz invariant (essentially by definition), so it remains unchanged
under rotations and boosts. The overall factors of energy are rotationally
invariant, but change if the system is boosted along the ẑ-axis. So, we need to
fix this.

Under a Lorentz boost by velocity β along the ẑ-direction, momentum and
energy transform as

(4.22)

and so the factors of energy in the cross section from Eq. 4.20 transform as

(4.23)

In writing this, we have used the relationship that the ratio of momentum to
energy is the velocity of the particle:

(4.24)

In general, this Lorentz transformation factor is not 1, so, as written, the cross
section isn’t invariant to boosts along the ẑ-axis. So, we’ll need to multiply by
another factor to cancel this transformation.

This factor must be dimensionless in natural units, because the cross
section of Eq. 4.20 already has dimensions of area. Also, it must actually



transform under a Lorentz boost. The only objects that satisfy these criteria
are the protons’ velocities, as defined in Eq. 4.24. Under a Lorentz boost
along the ẑ-axis, the velocity transforms as

(4.25)

The relative speed |vA − vB | of the colliding protons therefore transforms as

(4.26)

(4.27)

This is exactly the inverse transformation of the product of energies, Eq.
4.23! Their product is invariant to boosts along the ẑ-axis, and therefore the
expression for the proton– proton scattering cross section σ is

(4.28)

This has the correct dimensions of a cross-sectional area (energy−2 in natural
units) and the correct Lorentz transformation properties under rotations and
boosts about/along the collision axis.

4.2.2 Fermi’s Golden Rule
We’ve so far been a bit cavalier about what the object

(4.29)

actually is. It’s the final piece standing between us and predicting how often
protons will collide and produce the final state f in our experiment. To define
this, we need to think about what is measured in a particle physics
experiment. Experiments like ATLAS and CMS at the LHC are exceptionally



good at measuring energy and momentum of particles, but are not designed to
measure the positions of particles at collision. In the calculation of this
probability, we should therefore work with momenta and be completely
ignorant about positions of particles. From an expression with particular
momenta of the final-state particles, we must sum over all sets of momenta
that are consistent with the measurements that we make. For example, let’s
say we observe two positrons produced from proton collisions. For a
consistent calculation of the cross section, we must sum over all possible
momenta of the positrons which have positive energy, conserve four-
momentum, and correspond to real, on-shell positrons.

For concreteness, let’s consider a final state with n particles:

(4.30)

We will just demand that we measure the existence of the n final-state
particles, with any physical momenta. We denote the probability amplitude
for the initial-state protons A and B with given momenta to collide and
produce the final-state particles 1, 2, ..., n with particular momenta as

(4.31)

which is called the Lorentz-invariant matrix element or just the matrix
element. This will just be a placeholder until Section 4.3 when we will define
this object precisely. Because we only care about the existence of the final-
state particles and not their momenta, we need to sum over all possible
momenta, consistent with conservation laws.

Let’s work through how to do this. We start schematically, with

(4.32)

For a final-state particle i, its four-momentum is pi and is four continuous
components. Therefore, this sum should consist of n four-dimensional
integrals over each component of each final-state particle’s momentum. We
will express this as



(4.33)

For now, the integrals extend over all possible values of each momentum
component: non-negative energies and three-momentum components that are
any real number. Here, the product symbol  means we multiply the
momentum integration measures for each particle together:

(4.34)

The factors of 2π come from Fourier transforming from position to
momentum space representations of the wavefunctions for the initial and final
state.

As it stands, this representation is much too general and includes
configurations of final-state particles that violate conservation laws. First, the
relative domain of the energy and three-momentum integrals is unrelated.
However, the final-state particles must each be on-shell. We must enforce
that the integrals are 0 if  where mi is the mass of particle i, for all i
= 1, 2, ..., n. This can be accomplished by including a Dirac δ-function in the
integrand:

(4.35)

Again, the factors of 2π originate from a Fourier transform. The Dirac δ-
function δ(x) is 0 if x ≠ 0 and infinite if x = 0. However, the infinity is
constrained to produce a finite integral:

(4.36)

for any ϵ > 0. So, this indeed restricts the particles to be on the mass shell.



There are still unphysical configurations of the particles included in the
momentum integrals. So far, there’s no connection between the initial-state
and final-state momenta; however, these are of course equal by momentum
conservation. The integrals must only be non-zero if the total four-
momentum of the initial protons is equal to the total four-momentum of all n
final-state particles. This can also be enforced by a Dirac δ-function; we need
four of them to account for conservation of energy and three components of
momentum. Thus, including this factor, we have

(4.37)

The δ-function that imposes momentum conservation is shorthand for
conservation of each component:

This integral over the n final particle momenta is Lorentz invariant, and is
called n-body Lorentz-invariant phase space, and is denoted by dΠn or
dLIPSn :

(4.39)

Lorentz-invariant phase space is the relativistic density of states of n on-shell
particles in momentum space with a fixed total four-momentum.

Using the expression for Lorentz-invariant phase space and plugging it into
Eq. 4.28, our final expression for the proton scattering cross section is



This result is called Fermi’s Golden Rule.3 In the next section, we will
discuss how to calculate the Lorentz-invariant matrix element, M(A + B → 1

+ 2 + · · · + n). We’ll end this section with an evaluation of two-body phase
space, which we will use numerous times throughout the rest of this book.

Example 4.2 Performing as many integrals in Eq. 4.39 as possible, what is
the Lorentz-invariant, two-body phase space?

Solution
The two-body phase space integral that we want to evaluate is

(

Here, Q is the total energy–momentum four-vector, and we choose to work in
the center-of-mass frame where the total three-momentum is 0:

(4.42)

where Ecm is the energy in the center-of-mass frame. The phase space integral
can then be written as

 and m1 (m2) are the energy, three-momentum, and mass of
particle 1 (2).

Now, we use the on-shell δ-functions to do the integral over the energies of
the two particles. First, the integration measure is



(4.44)

for a four-vector p. The integral we want to do is

(4.45)

To do this integral, it’s almost in the form of Eq. 4.36, but in the δ-function,
the energy is squared. So, we’ll make the change of variables to

(4.46)

so that

(4.47)

Then, the integral over the on-shell δ-function is

(4.48)

Using this result, we can then write the phase space integral as

Next, the integrals over all three components of  can be done with the last
δ-function. This δ-function fixes 



For the remaining integrals over  we express the integral in spherical
coordinates. The integration measure is

(4.51)

Here, θ is the polar angle with cos θ ∈ [−1, 1] and ϕ is the azimuthal angle
where ϕ ∈ [0, 2π). Typically, and in all situations considered in this book,
we will not study matrix elements with azimuthal angle dependence. So, we
can just integrate over ϕ:

To integrate over the final δ-function, we change variables from the
magnitude of momentum  to E, where

(4.53)

Then, the differential element is

where, on the right, we have used the δ-function which sets E = Ecm.
Plugging this into the integral, we then find

(4.55)



The magnitude of one of the final-state particles’ momenta  is the solution
of the equation

(4.56)

which, for compactness, we leave implicit. Two-body phase space is
apparently dimensionless, and consists of a single integral over the angle θ,
called the scattering angle.



4.3 Feynman Diagrams
The last piece in Fermi’s Golden Rule of Eq. 4.40 that we need in order to
calculate the cross section is the Lorentz-invariant matrix element

(4.57)

which is the probability amplitude for protons A and B to collide and produce
particles 1, 2, 3, ..., n after collision. It represents the overlap of the
wavefunction of the initial and final states:

(4.58)

where the momenta of the final-state particles p1, p2, ..., pn and the momenta
of the initial-state particles pA, pB are specified. The object M must be

Lorentz invariant for the cross section to have the correct transformation
properties. It is called a “matrix element” because it represents an entry of the
scattering matrix, or S-matrix. The S-matrix of a quantum system encodes all
possible transitions from an initial to a final state.

4.3.1 Diagrams in Physics: Circuits
This is all still incredibly abstract. What we want is a procedure or algorithm
for calculating the Lorentz-invariant matrix element. It will be exceptionally
convenient to introduce graphs or diagrams to represent the transition from an
initial to a final state. For the A + B → 1 + 2 + · · · + n process, or compactly,
“2-to-n” scattering, we can draw the diagram:

(4.59)



Time in this diagram runs left to right: in the far past, protons A and B were
accelerated and then collided. After collision, n final-state particles were then
produced, and subsequently measured in the far future. The blob in the
middle represents the magic that happened during collision. We would like to
unpack that blob and have a way of calculating it explicitly. Somehow that
blob should be represented by lines and vertices that connect the initial to the
final state and correspond to a mathematical expression.

As an example of another instance in physics where we use diagrams, and
to motivate the diagrams in particle physics, consider circuit diagrams. For a
circuit diagram, we define different lines to represent different circuit
elements, and are often asked to determine a voltage across some external
wires. For example, consider the following circuit diagram:

(This is meaningless; it’s just an illustration.) The circuit is sourced by an AC
voltage denoted by  The different symbols

denote the circuit elements: capacitors, resistors, and inductors, respectively.
Really, they represent different functions for the voltage across that element
in terms of the charge flowing through the element. For example, the voltage
across a capacitor is V = Q/C, where C is the capacitance and Q is the total
charge on the capacitor. The other voltages are

(4.60)



Here, R is the resistance of the resistor and L is the inductance of the
inductor. So, we can compactly denote voltage/charge relationships with
symbols in circuit diagrams. Additionally, we need information about what
happens at nodes in the circuit:

Of course, we have Kirchoff’s rules, which are just the statements of energy
and charge conservation applied to circuits. Kirchoff’s first rule is that the
charge flowing into a node is equal to the charge flowing out of a node.
Kirchoff’s second rule is the identical statement, but applied to energy. A
consequence of this is that the net voltage around any closed loop in a circuit
is zero.

Given mathematical definitions of the symbols of lines and Kirchoff’s
rules, we can uniquely determine the voltage across the two open wires on
the right in the diagram:

We want to develop similar diagrammatics for particle physics to calculate
the probability that an initial collection of particles turns into a final
collection of particles:



Just like circuit diagrams, these particle physics diagrams should have the
following properties:

(a) Different particles are represented by different shapes of lines.
(b) At nodes (or vertices) in the diagram, relativistic energy and

momentum are conserved.
(c) The charge flowing into a vertex is equal to the charge flowing out of a

vertex.

Unlike circuit diagrams, in particle physics we also need to specify what
happens at vertices to conserve angular momentum. It is best to see how this
works in an example.

4.3.2 Diagrams in Physics: Electron–Muon Scattering
For concreteness, let’s consider one of the simplest processes in particle
physics: the collision of an electron and a positron that annihilate and
produce a muon and an anti-muon, e+ e− → μ+ μ−. We can visualize this as

(4.61)

The electron and muon are both electrically charged and so interact via
electromagnetism. The simplest way they can interact is by exchange of a
photon, the force carrier of electromagnetism. We can denote a photon by a
wavy line  called a propagator. Then, we can draw this scattering
process as

(4.62)



We’ve denoted particles with arrows that point with time (e−, μ−) and anti-
particles with arrows that point against the flow of time (e+, μ+). Such a
diagram is called a “spacetime diagram” or Feynman diagram after Richard
Feynman, who introduced them in the 1940s.4

For this diagram to be useful, it should (a) tell us a physical picture of what
is happening and (b) assist in calculation. The beauty (some may say curse5)
of Feynman diagrams is their immediate physical interpretation. From this
diagram, an electron and positron collide and annihilate into a photon. The
photon travels some distance and then transmogrifies into a μ+ μ− pair that
sails off into the sunset. This is a nice picture, but is not what is actually
happening, for reasons we will discuss in Section 4.3.4. Feynman diagrams
are our mathematical representation of an approximation to a particle physics
process.

Momentum Conservation

To make Feynman diagrams useful, we need to define what all of its parts
are. These are called the Feynman rules. We will step through the
description of the rules needed to evaluate a Feynman diagram and then
summarize them in Section 4.3.3. First, as we mentioned earlier, relativistic
energy and momentum is conserved at each vertex. To impose this, let’s go
back to our diagram and write the momentum four-vectors for each particle:

Momentum conservation requires that p1 + p2 = k1 + k2. Note also that the
electrons and muons are external particles and as such are on-shell; for



example,  the mass of the electron. The photon is an internal particle:
its ends are stuck on other particles. The momentum of the photon is also
fixed to be the sum of the electron and positron momenta. Because of this, it
is impossible for the photon to be on-shell!

To see this, let’s fix ourselves to scattering e+ e− along the ẑ-axis, with
equal energy. Then, the four-vectors of the electron and positron can be
written as

(4.63)

for some ẑ-component of momentum pz. The four-vector of the photon is then

(4.64)

Note that  This can never equal 0, for any
momentum pz, and therefore the internal photon is not on-shell. Particles that
are not on-shell are said to be off-shell or virtual.

External Particle Wavefunctions

Okay, what else is going on here? The external particles e+, e−, μ+, μ− are on-
shell and all are spin-1/2 fermions. Therefore, they are described by solutions
of the Dirac equation. As spin-1/2 particles, their spin can be up or down, or
some linear combination of up and down. Recall that we could express the
solution ψ to the Dirac equation as

(4.65)

where  with  and vs (p) are the four-
component spinors that describe the spin of external particles (u) and anti-
particles (v). They are complex (as they are wavefunctions) and so have
conjugates u† and v†, respectively. The spinors u(p) and v† (p) describe the
spin of an initial spin-1/2 particle and anti-particle, respectively, while u† (p)
and v(p) describe the spin of a final spin-1/2 particle and anti-particle. The
subscript s in us denotes the spin state (up or down), which is defined relative



to an appropriate axis.
In the case when the mass of the spin-1/2 particle is zero (or in the extreme

relativistic limit  the spin is described by the helicity of the particle.
The helicity is the projection of spin along the direction of motion. Because
massless particles must travel at the speed of light, helicity is Lorentz
invariant: there is no Lorentz transformation one can perform to change the
helicity. We call helicity right- or left-handed based on the direction of spin.
For example, a (massless) electron with right-handed helicity would be

To understand these names, curl your right or left hand about the axis of
momentum and look where your thumb points. The spin state s that defines
the external wavefunction spinor for massless fermions is either R or L for
right- or left-handed helicity, respectively.

Because they describe on-shell fermions, we identify the external lines of
the Feynman diagram with the spinors we defined:

The relative direction of the fermion arrow compared to the arrow of time
tells us if it is a particle or an anti-particle, and whether it is initial or final
state tells us how we should treat it. The rules are summarized in Table 4.1.

Table 4.1 External Spinor Assignments



Electron–Photon Vertex

Getting closer! We just need to figure out what the squiggle  means
and what a vertex  is. First, let’s focus on the vertex:

Look at what this is symbolizing: initial electrically charged particles emit or
radiate a photon. The likelihood of emission of a photon is controlled by the
electric charge e of the electron and positron, since, if they were neutral, they
could never emit a photon. The vertex also must conserve angular
momentum. The electron and positron are spin-1/2 particles and the photon is
spin-1. So, this vertex must align the spins of e+ and e− into total spin 1.

Let’s again align the e+ e− pair along the ẑ-axis and assume that the
electron and positron are massless. This is a good approximation if their
energies are much larger than their masses. For the electron and positron to
annihilate into a photon, their helicities must sum appropriately to spin-1.
Consider right-handed e+ and e− colliding:

In this configuration, the spins of the e+ and e− are in opposite directions,
which sum to 0 total spin. This spin configuration is therefore not allowed in
this process. For production of a spin-1 photon, we must align the spins of the
e+ and e− :



Therefore, the vertex aligns the spins of the electron and positron. This is
accomplished by multiplying the spinors together with a γ matrix, as
discussed in Section 2.2.2. For the initial-state electron and positron spinors,
this would correspond to

(4.66)

We then assign the vertex a value of the product of the electric charge e and a
γ matrix:

(4.67)

In the Weyl basis, the γ matrix can be written in terms of the Pauli spin
matrices, and the four-component spinors u and v decompose into two two-
component spinors of definite helicity. Calculating this spinor product in two-
component notation will be done in Chapter 6.

Photon Propagator

The last part of the Feynman diagram is the photon propagator. The photon
propagator expresses the momentum dependence of the strength of the
electromagnetic field. As such, it will depend on the four-momentum that
flows through it, which we will denote as q. The strength of the
electromagnetic force on charged particles doesn’t depend on the spin of
those particles, so we should expect that the propagator is exclusively a
function of the Lorentz-invariant q2. 6 That is, with momentum q flowing
through the photon, we assume that the squiggle can only be some function f
of q2 :

(4.68)

What function?
Because the internal photon is off-shell, q2 ≠ 0, we can think of q2 as its



effective mass. For e+ e− collision in the center-of-mass frame, the four-
vector q is

(4.69)

where  is the initial electron momentum. This photon has 0 momentum, so
it is at rest. Then, the “size” of this photon is determined by the Compton
wavelength:

(4.70)

where factors of ħ and c have been included for illustration. If this
wavelength is very small, then it is unlikely that the electron and muon will
interact; they have to be very close to know about one another. On the other
hand, if the Compton wavelength is large, then there is greater likelihood that
the electron and muon interact; the photon can “see” both of them at the same
time, even if they are widely separated. This motivates the propagator to be
inversely proportional to q2 :

(4.71)

Result

Putting all these pieces together, we can express the mathematical content of
the Feynman diagram. Explicitly, the Feynman diagram for e+ e− → μ+ μ−

with a particular choice of helicities for the external particles is

(4.72)



In analogy with Kirchoff’s rules, the Feynman rules we have discussed here
(what  means, what happens at a vertex, etc.) represent a unique map
from the Feynman diagram to a concrete mathematical expression that
represents the complex probability amplitude for the interaction. Feynman
diagrams are a powerful tool for predicting and interpreting experimental
results in particle physics.

The results presented in this section can be directly derived from the
Lagrangian of the theory called quantum electrodynamics (QED):

(4.73)

where Aμ is the vector potential of the photon and Fμν is the field strength
tensor of electromagnetism,

(4.74)

While we won’t discuss QED in this book much, it is the most precise
physical theory humanity has constructed. It makes predictions that agree to
better than 1 part per billion with experiment.

4.3.3 Feynman Diagrams: Summary
Feynman diagrams and their construction from the Feynman rules are a
central tool for analyzing particle physics processes. While we have
developed them somewhat piecemeal in this chapter, here we summarize
their content applied to electron–muon scattering. We will see numerous
applications throughout the rest of the book, so it will be important to have a
central repository to reference later.

Identify all initial- and final-state particles; collectively, they are called
external particles. External particles are described by solutions to the on-
shell equations of motion (the Klein–Gordon, Dirac, or electromagnetic
equations of motion). Draw an arrow of time that identifies the transition
from initial to final state. Arrows on external fermions identify them as
particles or anti-particles. The spinor assignments of external particles



and anti-particles is summarized in Table 4.1.
Connect external fermion lines together with photon propagators
denoted by a wavy line and assign its value as

(4.75)

where q is the four-momentum that flows through the propagator. The
momentum q is determined by momentum conservation at each vertex
in the diagram. Make every possible connection of fermion lines with
photon propagators. Diagrams that are topologically distinct should be
summed together.
At every vertex in the diagram, multiply spinors together with the
electric charge e and a γ matrix. That is, a vertex with electrically
charged fermions and a photon is assigned the value

(4.76)

Multiply spinors along the same fermion line together with vertices.
Multiply different fermion lines together and contract the Lorentz
indices of vertices that are connected by a photon propagator. With
explicit momenta and spin assignments, the diagram can then be
evaluated as a complex number.
Repeat with all distinct Feynman diagrams for the process of interest
and sum all diagrams together.

In this chapter, we just introduce the procedure of constructing Feynman
diagrams. We leave the Feynman diagram of Eq. 4.72 unevaluated, with no
explicit spinors. In Chapter 6, we will evaluate this Feynman diagram and
construct the cross section for the process e+ e− → μ+ μ−.

4.3.4 Feynman Diagrams: Caveat Emptor



While Feynman diagrams have a satisfying physical interpretation, as
mentioned earlier one must be careful to not take them too seriously.
Additionally, Feynman diagrams are useful to answer some questions of
interest in particle physics, but are not useful for other questions. Feynman
diagrams are a tool of particle physics, but particle physics is much more than
the content of Feynman diagrams.

For instance, in the process e+ e− → μ+ μ− the interaction proceeds through
electromagnetism. In the Feynman diagram of Eq. 4.72, the electromagnetic
field is illustrated as a wavy line representing a photon. So, we often say that
the interaction proceeds via a photon. This is a bit sloppy, however. The
photon that mediates the interaction is off-shell and virtual. Virtual particles
are not real: they can never be measured directly. The reason why they cannot
be measured directly is that the  of the intermediate photon does not
correspond to the eigenvalue of any Hermitian operator. For a real photon
described by a wavefunction |γ〉, the Hermitian operator  has eigenvalue

(4.77)

This is why Feynman diagrams are useful mathematical tools, but as physical
descriptions of the scattering process, should be interpreted with care.
Precisely, the wavy line in the Feynman diagram of Eq. 4.72 is the graphical
representation of an approximation to the quantum electromagnetic field.

The questions that Feynman diagrams can address in particle physics are
relatively limited, as well. In Chapter 6, we will introduce the notion of an
inclusive cross section, for which few or no restrictions are made on the final
state. Inclusive cross sections are well described by Feynman diagrams and
their input into Fermi’s Golden Rule. However, when there are constraints on
the final state that restrict particle energies or angles, Feynman diagrams are
no longer an accurate representation of the process. An example of this is
studied in Chapter 9 in which an infinite number of final-state particles are
necessary for an accurate description. As the representation of the
wavefunction overlap of an initial with a final state, Feynman diagrams do
not exhibit any time evolution. An initial state is one that (formally) exists
infinitely far into the past, while a final state is infinitely far into the future.
Time evolution will be important in Chapter 12 when we discuss neutrino
oscillation, but our analysis will effectively just use familiar methods from



quantum mechanics. Finally, as an approximation technique, Feynman
diagrams actually do not converge. We present a simple argument for why
this is true in Chapter 14. This is never a problem in practice as calculations
are only ever done to low orders, like that presented in Eq. 4.72. However, a
consequence of this is that Feynman diagrams cannot be used to predict
properties of bound states like the proton, for example. Using Feynman
diagrams to make deep statements about particle physics or quantum field
theory requires care, and one should only do it at one’s own risk.



Exercises
4.1 Galactic Collisions. The Milky Way and Andromeda (M31) galaxies

will collide in about 4 billion years. Both galaxies are spiral-type and
contain about 100 billion stars each, which is comparable to the
number of protons in a bunch at the LHC. In this exercise, we will
study this collision and estimate the number of individual stars that
interact.

(a) The two galaxies are similar in size and disk-shaped, with a
diameter of about 105 light-years and a thickness of about 103

light-years. If the relative velocity of the Milky Way and
Andromeda galaxies is about 105 m · s−1, estimate the flux factor
(luminosity) at collision. How does this compare to the
luminosity of proton collisions at the LHC?

(b) What is the average distance between two stars in these
galaxies? Assuming that an average star is about the size of our
Sun (radius 7 × 108 m), what is the ratio of the average distance
to star radius? Correspondingly, what is the ratio of the average
distance of protons in a bunch at the LHC to the proton radius?
Use 10−15 m for the proton radius.

(c) If the process of collision of the Milky Way and Andromeda
galaxies takes about a billion years, approximately how many
individual stars will collide? Is this similar to the number of
proton collisions per bunch crossing at the LHC?

4.2 Integrating δ-functions. In the definition of n-body phase space, there
were a lot of δ-functions that imposed on-shell conditions for
particles’ four-momenta or energy– momentum conservation. So,
when evaluating Fermi’s Golden Rule, we need to know how to
evaluate integrals involving δ-functions. In this exercise, we will see
how to do this.

(a) Suppose you have an integral to evaluate of the form



(4.78)

where f(x) is some function of x. Show that this is equal to

(4.79)

Hint: You’ll need to make a change of variables in the integral.
(b) Using part (a), evaluate the integral

(4.80)

4.3 Three-Body Phase Space. In this exercise, we will simplify three-
body phase space (n = 3), which will be useful when we discuss
processes in QCD and decays mediated by the weak force. We will
denote the four-vectors of the three final-state particles as pi, for i = 1,
2, 3, and they have masses mi, for i = 1, 2, 3. We will work in the
center-of-mass frame where the total momentum is 0 and the total
energy is Ecm. The total four-vector of the process will be denoted by
Q = (Ecm, 0, 0, 0).

(a) Very useful quantities for expressing three-body phase space are
the xi variables, for x = 1, 2, 3. Define

(4.81)

Show that

(4.82)

(b) In the center-of-mass frame, determine expressions for the
energy of particle i, Ei, and the magnitude of the three-



momentum  in terms of the xi and the masses of the particles.

(c) As in Example 4.2, we can integrate over the on-shell δ-
functions, producing the integral for three-body phase space:

Here,  We can eliminate the integral over  by
enforcing the three-momentum conserving δ-functions. Do this;
you should find

(4.84)

(d) Now, express the integrals over the three-momenta  and  in
spherical coordinates. Note that there are four angular integrals:
two azimuthal angles, and two polar angles. By integrating over 

 the energy E3 is a function of  and therefore a
function of the angle between  and  Do the integral
over cos θ12, eliminating the last δ-function. You should find

(4.85)

ψ is the remaining polar angle, and ϕ1 and ϕ2 are the remaining
azimuthal angles.
Hint: The angle between the momenta of particles 1 and 2, θ12,
can be expressed as one of the polar angles.

(e) The remaining three angles, ψ, ϕ1, and ϕ2, simply rotate the
three-particle system. Integrate over these angles. You should
find

(4.86)



(f) Now, there just remain two integrals over the magnitude of
momenta  and  Using part (a), express the remaining
integrals in terms of x1 and x2. Show that

(4.87)

By momentum conservation the energy fractions x1 and x2 are
restricted to lie in the domain [0, 1] with the constraint that x1 +
x2 > 1.

4.4 e+ e− → e+ e− Scattering. In this chapter, we discussed the details of
the (lowest-order) Feynman diagram for the process e+ e− → μ+ μ−. In
this exercise, we will study the process e+ e− → e+ e−.

Using the Feynman rules, draw all of the Feynman diagrams for e+

e− → e+ e− scattering, called Bhabha scattering. 7 Each diagram
should contain only one internal photon, and be sure to clearly label
the momentum of each external particle.

Hint: Unlike e+ e− → μ+ μ− scattering, there is more than one
Feynman diagram for e+ e− → e+ e− scattering.

4.5 Non-Relativistic Limit of Feynman Diagrams. Feynman diagrams
may seem somewhat magical and disconnected from familiar non-
relativistic or classical physics. In this exercise, we will demonstrate
how the contents of a Feynman diagram connect to the non-
relativistic limit of electromagnetism.

Consider the scattering of electrons and muons e− μ− → e− μ−,
which is represented by the following Feynman diagram:



(a) Express the four-momentum q flowing through the photon in
terms of the four-momenta of the external particles.

(b) Describe the physical configuration of the electron and muon if
the internal photon goes on-shell. That is, as q2 → 0, does that
correspond to the electron and muon getting closer together or
farther apart?

(c) From the photon propagator in this diagram, we can define a
corresponding electric potential. Multiplying by the electric
charges e of the electron and muon, the momentum electric
potential  is

(4.88)

Take the non-relativistic limit of this expression; that is, using
the result from part (a), take the limit where the masses of the
electron and muon are much larger than their magnitude of
(three-)momentum.

(d) Call the non-relativistic limit of the potential from the previous
question Ṽ(⃗q); that is, it depends on the three-momentum of the
photon. We can write this as

(4.89)

We aren’t used to dealing with potentials defined by particles’
momenta; typically, we deal with potentials that are functions of
(relative) position. To determine the electric potential  we
need to Fourier transform the potential  from a function of
momentum to one of position.
The necessary Fourier transform is

(4.90)



Write the integral over the three components of the momentum 
 in spherical coordinates: momentum magnitude  azimuthal

angle ϕ, and polar angle θ. You’ll also want to express the dot
product  in terms of the magnitude of the  and  vectors.
Integrate over the azimuthal angle ϕ and the polar angle θ. You
should find

(4.91)

(e) Now, we need to do the integral over  Note that

(4.92)

Using this and the definition of the δ-function,

(4.93)

show that

(4.94)

That is, the photon propagator that goes like 1/q2 in momentum
space corresponds to the familiar  potential in position
space!

4.6 Proton–Proton Total Cross Section. The TOTEM experiment
(TOTal Elastic and diffractive cross section Measurement) at the
Large Hadron Collider measures the total cross section for proton
collisions. The TOTEM experiment is located far “downstream” from
the collisions at CMS. The basic way that it measures the total cross
section of the proton is much the same as how you would measure the
cross section of any object.



A very efficient way to measure the cross section of an object is to
shine light on it and measure the size of the shadow. The TOTEM
experiment sits far from the collisions at CMS so that it can measure
the size of the effective “shadow” from the proton collisions. A
proton occupies a finite size in space, and so particles produced in the
collision must be deflected around the proton, producing a shadow, or
lack of particles observed.

Figure 4.2 shows results from TOTEM and various other
experiments on the measurements of the total, elastic (kinetic energy
preserving), and inelastic cross sections of the proton measured in
millibarns, as a function of center-of-mass collision energy .
Estimate the radius of the proton in meters as measured by the
TOTEM experiment, at center-of-mass collision energies of 7 and 8
TeV.

Fig. 4.2 Plots of the elastic σel, inelastic σinel, and total σtot cross sections in millibarns (mb) for proton
scattering measured by various experiments, as a function of the center-of-mass collision energy, .



From G. Antchev et al. [TOTEM Collaboration], “Luminosity-independent measurement of the
proton–proton total cross section at  = 8 TeV,” Phys. Rev. Lett. 111, no. 1, 012001 (2013),
doi:10.1103/PhysRevLett.111.012001.

4.7 Proton Collision Beam at ATLAS. The integrated luminosity is the
time integral of the luminosity over a time interval [t0, t1]:

(4.95)

and has units of area−1. The integrated luminosity in collider physics
experiments is often measured in units of inverse barns (b−1).

Figure 4.3 is a plot from the ATLAS experiment of the integrated
luminosity of proton collisions during data taking in 2016, as a
function of date. Note that the date is written in the European standard
Day/Month. The integrated luminosity is measured in inverse
femtobarns (fb−1).

Fig. 4.3 Total integrated luminosity in inverse femtobarns (fb−1) of the ATLAS experiment versus the
date in 2016 when data were taken. Credit: ATLAS Experiment © 2018 CERN.



(a) From this plot, estimate the average luminosity over the data-
taking period. Express the result in inverse femtobarns per
second and inverse centimeters squared per second.

(b) Using the TOTEM plot Fig. 4.2 from Exercise 4.6, estimate the
number of proton collision events that took place in the ATLAS
experiment during data taking in 2016. On average,
approximately how many proton collision events occurred per
second?

(c) Figure 4.4 is nicknamed the Stairway to Heaven plot and shows
the cross section in picobarns for numerous final states in
proton–proton collisions as measured in the ATLAS experiment
at the LHC. For example, the cross section for W boson
production pp → W at a center-of-mass collision energy of 13
TeV is about σ pp→W ≃ 2 × 105 pb = 2 × 10−7 b.

Fig. 4.4 Measured cross sections in picobarns (pb) for the production of numerous Standard
Model particles in proton–proton collisions at the LHC. Credit: ATLAS Experiment © 2018



CERN.

For the following processes estimate the number of collision events
recorded in 2016 (13 TeV collisions):

(i) pp → Z
(ii) pp → tt

(iii) pp → H
(iv) pp → ttZ.

4.8 Upper Limits on LUX Bounds. This exercise is a continuation of
Exercise 2.8. In this exercise, we will work to understand the upper
limit of the bounds on WIMP dark matter masses established by the
LUX experiment. The plot of the WIMP mass versus interaction cross
section with xenon nuclei is reprinted in Fig. 4.5. Above a WIMP
mass of about 100 GeV, the bound established by LUX is determined
by the flux of WIMPs through the LUX detector. We will work to
determine how this bound is established.

Fig. 4.5 A plot of the limits on the WIMP mass and interaction cross section with 131 Xe from the LUX
experiment. Reprinted figure with permission from D. S. Akerib et al. [LUX Collaboration], Phys. Rev.
Lett. 118, no. 2, 021303 (2017). Copyright 2017 by the American Physical Society.

The LUX detector consists of 250 kg of pure liquid xenon, which



you can assume is mostly composed of 131 Xe. Liquid xenon has a
density of about 3000 kg · m−3. For WIMP dark matter to explain the
observed rotational velocity of stars about the galaxy, its halo must
have a mass density of about 0.3 GeV · cm−3. Assume that the Earth
travels at 240 km · s−1 through the halo.

(a) To set the bound on WIMP mass and interaction strength,
assume that LUX observed one event in its 332 total days of data
collection. With this assumption, determine the cross section σ
for WIMPs to interact with 131 Xe as a function of the WIMP
mass mχ. Express the cross section in zeptobarns (10−21 barns).

(b) Compare this result to the bound plotted in Fig. 4.5, above a
WIMP mass of 100 GeV. Note that the cross section is expressed
per nucleon (proton or neutron) in the 131 Xe nucleus, so make
sure to account for this.

(c) What is the maximum mass of a WIMP particle for which one
interaction event was possible? That is, what mass corresponds
to just one WIMP particle passing through the LUX detector
during the entire 332 days?

4.9 Research Problem. To study rare (very unlikely) final states at the
LHC, we just have to collide a lot of protons together. Is there an
upper limit to the proton collision luminosity? If so, is it limited by
possible technology or by fundamental physics?

1 The term “Fermi’s Golden Rule” comes from colorful names that Fermi used in a nuclear
physics class he taught at University of Chicago; see E. Fermi, A Course Given by Enrico Fermi
at the University of Chicago, 1949, University of Chicago Press (1950). The Golden Rule #1
that he cites in his lectures is another formula for transition rates in quantum mechanics, which,
oddly, is less general than what we now know as Fermi’s Golden Rule. Along the way, we’ll
develop Fermi’s Golden Rule and Feynman diagrams, two cornerstone techniques for making
predictions in particle physics.

2 Reproduced from M. G. Holloway and C. P. Baker, “How the barn was born,” Phys. Today 25,
no. 7, 9 (1972), with the permission of the American Institute of Physics.

3 Though called “Fermi’s Golden Rule,” it was derived by Dirac in 1927; see P. A. M. Dirac,
“Quantum theory of emission and absorption of radiation,” Proc. Roy. Soc. Lond. A 114, 243
(1927). This is an example of Stigler’s law of eponymy; see S. M. Stigler, “Stigler’s law of
eponymy,” Trans. N. Y. Acad. Sci. 39, 147 (1980).

4 R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769 (1949).



While Feynman introduced his diagrams, Freeman Dyson was the one who shortly after
provided the solid mathematical basis for Feynman diagrams. See F. J. Dyson, “The radiation
theories of Tomonaga, Schwinger, and Feynman,” Phys. Rev. 75, 486 (1949); F. J. Dyson, “The
S matrix in quantum electrodynamics,” Phys. Rev. 75, 1736 (1949). Freeman Dyson is the
eponym of the character in the “HλLF-LIFE” video game series. Dyson is also perhaps the most
well-known physicist who does not hold a Ph.D.

5 Julian Schwinger derisively stated that with his diagrams, “Feynman brought field theory to the
masses.” Schwinger’s sentiment from a modern viewpoint is harsh, but nevertheless one must
be careful with the physical interpretation of Feynman diagrams.

6 This isn’t quite true, but the details depend on the choice of gauge that one makes to write the
propagator. In this book, we will exclusively use the Feynman–’t Hooft gauge, for which the
propagator only depends on q2.

7 H. J. Bhabha, “The scattering of positrons by electrons with exchange on Dirac’s theory of the
positron,” Proc. Roy. Soc. Lond. A 154, 195 (1936).



5

Particle Collider Experiment

Physics wouldn’t be physics without experiment. We need to concretely test
the predictions that we make about how Nature evolves and interacts and
search for new phenomena we haven’t thought of. Essentially the one and
only way in which experiments in particle physics are performed is to collide
particles with one another. Expansive high-energy colliders, like the LHC, of
course do this, but so do experiments searching for dark matter (looking for
collisions of dark matter with atomic nuclei), measuring properties of
neutrinos (looking for neutrino collisions with nuclei), probing matter at
extreme densities (by colliding nuclei together), or performing detailed
studies of the proton (colliding particles with the proton at low energies).
Colliders are the bread and butter of particle physics, and we need to
understand their properties in detail to know how we can test a hypothesis.
We can only test what we can measure, so working within the collider
paradigm will highly restrict what is worth calculating at all.

Our discussion of particle collision experiments centers around the LHC
and its two all-purpose detectors, ATLAS and CMS. The detectors, while
among the most prominent parts of the whole LHC experiment, are just two
pieces in a series of machines and equipment that accelerate protons to high
energy, collide them, record what comes out, and then ship that data out for
analysis. Each item in this chain of operations could occupy whole chapters,
but here we just provide a first glimpse at the detail and complexity that go
into these experiments. Everything that we introduce here is applicable to all
particle physics experiments, but perhaps in different quantities, depending
on how the experiment is constructed and to what it is sensitive.

This chapter has three main parts: what happens before protons collide at
the LHC, what happens at the point of collision, and what happens after. The
ATLAS and CMS experiments occupy the middle part, while in the last part
we discuss the data management at the LHC and the standard statistical tools
used to claim discovery. We start with what happens before the collision,



which requires creating the protons that will be accelerated and collided in
the first place.



5.1 Before Collision: Particle Acceleration
After photons and electrons, protons are probably the easiest particles to
isolate and create a beam of. Protons are just atomic hydrogen nuclei, so to
get a proton you just need to ionize hydrogen. This is pretty easy: take your
hydrogen gas and put it in a strong electric field. In this electric field, the
negatively charged electron and the positively charged proton are pulled
apart. Once hydrogen is broken up, you can use electric and magnetic fields
to do whatever you want to the protons. After isolating protons, the LHC
manipulates them with a radio-frequency (RF) electromagnetic field. The
protons are organized into collections of about 100 billion protons called
bunches that sit in the troughs of the field. These bunches have a size fixed
by the wavelength of the RF field and are separated in space from one
another. The RF field at the LHC has a frequency of 400 MHz, corresponding
to a wavelength of about 3/4 of a meter. No proton exists in isolation at the
LHC; it is always within its bunch.

Once separated into bunches, the protons are sent through a series of
accelerators until they reach the main LHC ring. The first accelerator, Linac
2, is a linear accelerator that consists of a number of dipole electric fields
arranged in a line. These electric fields push and pull the proton bunches,
accelerating them to an energy of 50 MeV. The bunches are then sent into the
Proton Synchrotron Booster, a circular accelerator, to reach an energy of 1.4
GeV. As a circular accelerator, the proton bunches can be sent around the
circle many times to reach the desired energy. This is an advantage with
respect to a linear collider, which only gets one chance to accelerate the
protons. However, this advantage comes at a cost. Even with a constant
speed, protons traveling in a circle are accelerating and therefore emit
electromagnetic radiation, called synchrotron radiation. A circular
accelerator must input enough energy to both speed up the protons and
maintain their energy, as they lose energy continuously through synchrotron
radiation. This is one of the main limitations on the energy to which circular
accelerators can reach, which we will discuss shortly.

After the Proton Synchrotron Booster, the proton bunches are accelerated
to 25 GeV by the Proton Synchrotron and then to 450 GeV by the Super
Proton Synchrotron (SPS). The ring of the SPS is visible in the aerial view of



CERN in Fig. 1.2. After the SPS, the protons are injected into the LHC ring,
and accelerated to their (current as of 2018) maximum energy of 6.5 TeV. To
maintain that energy and to keep the protons in the LHC ring requires
continuous energy input through both electric and magnetic fields. For
charged particles with mass m and energy E traveling in a circle of radius R,
the power P lost through synchrotron radiation is1

(5.1)

The electric charge of the particle is assumed to be the fundamental unit of
charge, e, and the velocity of the particle is v. For protons at the LHC, the
velocity is essentially the speed of light, c. We can rewrite this expression in
useful units, where the orbital radius R is expressed in km and the particle
energy and mass are expressed in the same units (GeV, for example). Then,
the power in eV · s−1 lost to synchrotron radiation is

(5.2)

The boost factor E/m of protons at the LHC is about 7000 and the
circumference of the LHC is 27 km, and so the power radiated away in
synchrotron radiation per proton is

(5.3)

This is an appreciable rate compared to the energy of protons at the LHC.
Accounting for all protons accelerated at the LHC, the power emitted from
synchrotron radiation is about a kilowatt. This is a small part of the 200 MW
power budget of the entire CERN site. The LHC regularly shuts down for a
few months in the winter because electricity usage is largest in winter and
costs the most then as well. You’ll study the consequences of the synchrotron
power losses in Exercise 5.1.

In addition to synchrotron losses from the protons traveling in a circle, we
have to keep the protons in the LHC ring. This is accomplished with
thousands of superconducting electromagnets that bend the path of the



protons, without affecting their kinetic energy. The strength of the magnetic
field  that is required to keep particles in a circle of radius R is a relatively
standard calculation in a course on electromagnetism. For a particle with the
fundamental electric charge e, this field is

(5.4)

In this expression, we have assumed that the particle’s momentum  is
perpendicular to the magnetic field  For highly relativistic particles, 

 and, expressing the energy in TeV and radius in km, the required
magnetic field in tesla is

(5.5)

At the LHC with protons with energy of 6.5 TeV, the magnitude of the
magnetic field is estimated to be about 5 T. This is quite close to the 8 T
magnets that are actually used in the experiment. The strength of the bending
magnets is the most restrictive constraint on increasing the collision energy at
the LHC. Modern superconducting magnets have a maximum strength of
around 20 T or so. Therefore, with current technology, to accelerate protons
to significantly higher energies requires a larger ring. Efforts are now
underway to plan for a 100 TeV collider located around Geneva. To reach
these energies requires an acceleration ring of about 100 km. This and other
efforts for future colliders will be presented in Chapter 14.

Now that protons are traveling in the LHC ring at their maximum energy,
we need to collide them. The two counterrotating beams consisting of
thousands of proton bunches are set to collide at specific locations around the
LHC ring. However, even though bunches consist of billions of protons,
protons are very small and the vast majority of the volume of a bunch is
empty space. The length of a proton bunch is about 40 cm (about half of the
RF wavelength that bunches the protons), and the radius of the beam in the
LHC ring is about 1 mm. Therefore, the volume of a bunch is

(5.6)



By contrast, the total volume of the bunch occupied by 100 billion protons is
only about

(5.7)

where we have assumed that the radius of the proton is about 10−15 m and
one dimension of the protons is Lorentz-contracted by a factor of γ ≃ 7000.
The volume of empty space is more than 30 orders of magnitude larger than
the volume of the protons! Such a small fraction of the volume occupied by
protons makes it extremely challenging for any of the protons to interact in an
interesting way.

To improve the likelihood that protons actually collide, we need to make
the beam volume much smaller. This is accomplished at the LHC by
quadrupole focusing magnets located around the collision points. Figure 5.1
shows the magnetic field lines of a quadrupole magnet. Consider a beam of
protons traveling into the page, into this quadrupole magnet. The beam takes
up a finite space, so there will be protons in each of the wedge-shaped
regions. The magnetic force  on the protons is given by the Lorentz force
law:

(5.8)

where e is the fundamental charge,  is the velocity of the protons, and  is
the quadrupole field. By the right-hand rule, protons in the top and bottom
wedge regions will be focused; that is, they will move toward the center of
the bunch. However, protons in the left and right wedges are defocused: they
are pushed away from the center of the bunch. The bunch can be focused in
both top–bottom and left–right regions by stacking a series of quadrupole
magnets that are rotated 90◦ degrees from one another. At the LHC, these
quadrupole magnets can focus the beam width down to a radius of less than
10 micrometers! Therefore, at the collision point, the volume of the bunch is
reduced to

(5.9)



Fig. 5.1 A representation of the magnetic field lines of a quadrupole magnet.

Though the bunch volume has only decreased by a factor of about 10,000,
this increases the luminosity and therefore the likelihood of proton collision
by the same factor, which is vital for interesting physics at the LHC.



5.2 At Collision: Particle Detection
Once the proton beams have been accelerated to their maximum energy and
focused at a collision point, they are collided, which just means that two
opposite-traveling bunches are passed through one another. At the LHC,
bunches are collided every 25 nanoseconds. As we studied in Chapter 4, the
bunch parameters and the proton cross section determine how many of the
protons in each bunch collision actually interact. When two protons collide
and exchange a significantly large amount of momentum, they explode into a
shower of particles emanating from the collision point. The dynamics of what
happened at the moment of the proton collision is imprinted on these final-
state particles, through energy and momentum conservation, through angular
momentum conservation, or through charge conservation. To play the
detective and be able to reconstruct the physics of the proton collision
requires measuring all, or as many as possible, of the particles created and
their properties.

At a particle physics detector, we are able to measure many particle
properties, but many others we don’t even try to measure. For example,
measuring energy and momentum are relatively easy, as we will discuss.
Also, if you have measured the energy and all three components of three-
momentum then you can reconstruct particle masses via

(5.10)

Electric charge is also relatively easy to measure. While we needed a
magnetic field to keep protons in the LHC ring, putting a magnetic field in
our detector enables identification of charged particles by their curvature in
this field. Angular momentum or spin, on the other hand, is not easy or
convenient to measure, and so we don’t design our detectors to be sensitive to
spin. We will see in Chapter 6 that spin leaves its mark through energy and
momentum conservation, so we will be able to infer spin from other
measurements.

In this section, we introduce the components of a modern particle physics
detector, focusing around the ATLAS and CMS experiments.2 Schematic
illustrations of the ATLAS and CMS experiments are presented in Fig. 5.2.



Each illustration has an outline of a person for scale. While the ATLAS and
CMS experiments differ in their precise design, they share many qualities.
These are appropriately labeled on the figures as calorimeters or muon
detectors, for example; each has a specific purpose and measures specific
particles or properties. Before discussing these components, we must
introduce a coordinate system by which to describe measurements performed
by these experiments.





Fig. 5.2 Illustrations of the (a) ATLAS and (b) CMS detectors. Credit: CERN © CERN.



5.3 Detector Coordinates
To first approximation, both the ATLAS and the CMS detectors are
cylinders, with the colliding proton beams along the axis of the cylinder as
illustrated in Fig. 5.3. The center of the cylinder is where the proton beams
collide, and is called the collision point or interaction point (denoted as “IP”).
As these experiments are cylinders, we should use cylindrical coordinates to
orient ourselves and express vectors. The cylindrical coordinates we use are
azimuthal angle ϕ, pseudorapidity η, and transverse momentum p⊥.

Fig. 5.3 A schematic illustration of the detector as a cylinder. On this figure, the colliding proton beams
are labeled, and the point of their collision is denoted as “IP.” Coordinates on this cylinder are the
azimuthal angle ϕ, the pseudorapidity η, and the transverse momentum p⊥.

The azimuthal angle ϕ is just the angle about the proton beams, as
illustrated in the figure. In cylindrical coordinates, we also need a “z”
coordinate that specifies the distance along the proton beams, away from the
interaction point. At the LHC, this is measured as the pseudorapidity η,
which is defined by the polar angle as measured with respect to the proton



beam. The pseudorapidity η is

(5.11)

where the polar angle is θ. An illustration of this is:

Pseudorapidity η is 0 for central collisions, directly perpendicular to the beam
at the interaction point. It is ±∞ along the proton beams where the polar angle
is 0 or π. What makes pseudorapidity useful is that it is true rapidity for
massless particles.

In Exercise 2.2 in Chapter 2 we defined the rapidity y as

(5.12)

where the ẑ-axis coincides with the proton beams. For Lorentz boosts along
the proton beam, the rapidity just transforms additively. That is, differences
of rapidity are invariant to Lorentz boosts along the ẑ-direction. This is a very
nice and important property that we will exploit when studying the strong
force. For a massless particle, energy is equal to the magnitude of
momentum:  and so the polar angle is cos θ = pz /E. Plugging this into
the expression for rapidity, we have

(

In general, however, rapidity and pseudorapidity do not coincide. In



particular, this means that the pseudorapidity of a massive particle does not
have a simple transformation property for boosts along the ẑ-axis.

Transverse momentum, or p⊥, is the effective radial coordinate on the
experiment. p⊥ is the magnitude of particle momentum that is transverse to
the proton beam, in the x̂ŷ plane, as illustrated in Fig. 5.3. Better than
rapidity, p⊥ is simply invariant to Lorentz boosts along the proton beam
direction. Additionally, the initial momentum of the protons (and their
constituent quarks and gluons) is along the ẑ-axis of the experiment. The
initial transverse momentum vector is 0 for the protons as well as for their
constituent quarks and gluons, and therefore the final transverse momentum
vector must also be 0. That total transverse momentum is 0, is conserved, and
is easy to measure at collider experiments are very useful and important
properties.

With the ẑ coordinate along the proton beam, the p⊥ is

(5.14)

for x- and y-components of momentum. Any massless four-vector p can be
expressed in (η, ϕ, p⊥) coordinates as

(5.15)

A massive four-vector is similar, we just need to include the mass
appropriately. This requires incorporating the mass into the energy of the
particle, as well as using true rapidity, rather than pseudorapidity. The four-
vector of a massive particle is

(5.16)

where the mass is m. The quantity  is called the transverse
mass and is invariant to boosts along the proton beam direction.



5.4 Detector Components
With the detector coordinates established, let’s move on to how to measure
particle properties from the various components of the detector. While the
detailed illustrations of the ATLAS and CMS experiments in Fig. 5.2 are
useful for gaining an appreciation for the size and design of the detectors, we
will work with a much simplified picture which ATLAS and CMS are to both
equivalent. Looking down the cylinder or barrel of one of these detectors,
they have the schematic form illustrated in Fig. 5.4. At the center is the
interaction point, and the proton beams go into and out of the page. Like an
onion, these experiments consist of many layers, each of which measures
particular properties or is sensitive to particular particles. These different
layers are labeled and we will describe each layer in this section, working
from the inside out.

Fig. 5.4 Cross-sectional schematic illustration of the layers of a particle collider detector. The beams of
protons go into and out of the page and collide in the center.

Detectors like ATLAS or CMS are often referred to as 4π hermetic
detectors because they capture all particles produced from proton collision
throughout 4π steradians of a sphere as best as possible. This task is
impossible because, at least, the proton beams must come in somewhere and
cables have to go somewhere. However, the coverage is otherwise
exceptional. The tracking system extends out to  which is only about
an angle of 10◦ above the proton beam. The calorimetry extends further; it



goes out to about  which is less than one degree above the proton
beam!

5.4.1 Tracking System
Immediately outside the region of the collision point and proton beams is the
tracking system. The tracking system consists of millions of individual
channels that respond when a charged particle hits them. These channels
consist of silicon or gas that ionizes when a high-energy particle with charge
passes through. This ionization is recorded at numerous points along the
trajectory of the charged particle and traces out a track of the charged
particle. For this reason, charged particles are often just called “tracks” at the
LHC experiments.

Observing these tracks provides information about the direction of charged
particles, but by itself doesn’t provide information about the energy of the
particles. What makes the tracker especially useful is that it is embedded in a
solenoidal magnetic field. The solenoidal field points along the ẑ-axis
(parallel to the proton beam) and so charged particles’ trajectories are
affected by the magnitude of their charge and transverse momentum p⊥.
Only the component of momentum perpendicular to the magnetic field is
affected by the magnetic field. Because of this solenoidal magnetic field, the
tracking system is sensitive to both the charge and the momentum of
particles. Let’s see how this works.

As we discussed in Section 5.1, the radius of curvature R (in meters) of a
charged particle is

(5.17)

where Q is the electric charge of the particle in units of the fundamental
electric charge e, transverse momentum p⊥ is measured in GeV, and the
magnitude of magnetic field  is in T. For example, for a p⊥ = 1 GeV
electron in the 2 T magnetic field of the ATLAS detector, the radius of
curvature is about 1.5 m. Conversely, observing a charged particle with a
radius of curvature of 1.5 m means that its p⊥ is 1 GeV. With the radius of
curvature, we can measure the magnitude of transverse momentum. With the



right-hand rule, the sign of the charge of the particle can be determined as
well.

The way in which tracks are constructed by the detector is interesting. The
tracking system consists of many layers of material away from the interaction
point. As the charged particle passes through, it hits these layers, as
illustrated in Fig. 5.5. Curvature can be determined by a minimum of three
hits, though the tracking system typically has about 30 layers for redundancy.
Importantly, it is the curvature, not the radius of curvature, that is more easily
measured. The curvature is just the inverse of the radius of curvature, which
is inversely proportional to transverse momentum. Note that the uncertainty
on the curvature is

(5.18)

That is, the uncertainty on the measurement of momentum in this way
increases with increasing p⊥:

(5.19)

Fig. 5.5 Schematic image of a charged particle passing through the layers of the tracking system.
Proton beams go into and out of the page, the interaction point is located at the center, the layers of the
tracker are represented by the concentric circles, the trajectory of the particle is illustrated by the dashed
curve, and hits in the tracker are the crosses.



Therefore, it is increasingly challenging to measure p⊥ in the tracking system
as p⊥ increases.

By hitting elements of the tracking system, charged particles lose some
energy due to ionization. When a charged particle, such as a muon, passes
close to the electron cloud of an atom in material, like

the charged particle’s electric field disrupts the electron cloud and can pull
electrons out, ionizing the atom. By ionizing the atom, the muon loses some
energy. The mean rate of energy loss per unit length due to ionization was
first calculated by Hans Bethe in the 1930s.3 For a relativistic particle with
mass M, energy E, and electric charge Qe, he found the mean energy loss to
be

Z is the atomic number of the ionizing material and n is the number density of
atoms per cubic meter. Fiducial values for silicon have been inserted. me is
the mass of the electron. Ep is the plasma energy of the ionizing material, and
Ep ≃ 30 eV for most materials.

One potential concern regarding charged particles passing through the
tracking system is that they would lose a significant amount of energy to
ionization and so their momentum would not be accurately measured.
However, with Bethe’s formula we can demonstrate that this isn’t much of a
concern. For a muon passing through silicon with energy E = 1 GeV and
mass M ≃ 106 MeV, the mean energy loss per meter is

(5.21)



In the CMS silicon tracking system, each layer of the tracker is about 500 μm
in thickness, and a muon might hit 30 or so such layers. The total thickness of
silicon that a such muon would travel through is about 15 cm. The mean
energy loss due to ionization in the silicon tracker of a 1 GeV muon would
then be approximately

(5.22)

This is only about 6% of the muon’s energy. If the muon had an energy of
100 GeV, the fractional energy loss would be even smaller. A 100 GeV muon
would only lose about

(5.23)

to ionization by passing through the tracking system. This is much less than
1% of the energy of a 100 GeV muon.

5.4.2 Calorimetry
The next layer of the particle detector onion is the calorimetry. The
electromagnetic and hadronic calorimeters have the same basic function, but
are designed to be sensitive to different types of particles. As calorimeters,
these parts of the detector measure energy, in much the same way that the
calorie content of food is determined. By burning a sandwich and using the
expended heat to warm up water, we can determine the calorie, or energy,
content of the sandwich by the temperature increase of the water. Similarly,
the calorimeters are designed to stop particles and have them explode all of
their energy into individual cells of the calorimeters. These cells are referred
to as towers and are finely segmented in ϕ and η. By the amount that a tower
“warms up” or the degree of its response to a particle that hits it, the energy
of that particle can be determined. Because of the fine angular segmentation,
the direction of the particle can be well measured. Therefore, assuming that
the particle that hit the calorimeter tower is massless, its complete four-vector
is known.

As their names suggest, the electromagnetic and hadronic calorimeters are
sensitive to electromagnetic and hadronic radiation, respectively. In
particular, the electromagnetic calorimeter stops electrons and photons, low-



mass particles that interact via electromagnetism. The most important way
that the electromagnetic calorimeter stops high-energy electrons and photons
is through bremsstrahlung (“braking radiation” in German).

Bremsstrahlung is the process by which an electron emits a photon which
decreases its energy. In a similar way, a photon can split into an electron–
positron pair, and each resulting particle has less energy than the initial
photon. We can express these processes with the Feynman diagrams

While the rate of bremsstrahlung can be calculated by considering the
collinear emission of a photon off of an electron, we will just quote the result
here. The rate of energy loss per unit length via bremsstrahlung can be
expressed as

(5.24)

where X0 is called the radiation length. The radiation length X0 for an electron
to lose energy is a function of the material through which the electron is
moving, just like for ionization radiation. A radiation length X0 is the distance
over which the electron loses a fraction e−1 (e = 2.71828...) of its energy.
Typical radiation lengths are the order of centimeters, and your calorimeter
should be many radiation lengths thick to capture all of the energy of the
electron.

At ATLAS, for example, the electromagnetic calorimeter consists of lead
plates immersed in liquid argon. The liquid argon ionizes, and the energies of
low-energy particles can be measured efficiently. The lead plates have strong
stopping power for more energetic particles; lead has one of the shortest
radiation lengths, of about 5 mm. Together, they form the electromagnetic
calorimeter and stop nearly all electrons and photons created in collision.

The hadronic calorimeter acts in much the same way as the



electromagnetic calorimeter; however, it must stop particles with a much
higher mass than electrons. Hadrons, like pions, interact most strongly with
atomic nuclei, and not atomic electrons. As such, their interactions are more
complicated to understand, but the same basic principles are at work.
Hadrons pass through a material and lose energy by inelastic collisions with
atomic nuclei. The rate of collisions, just as with bremsstrahlung, can be
characterized by a nuclear interaction length, λI. Over one λI, a high-energy
hadron loses a fraction e−1 of its energy to interactions with nuclei. Iron is
one of the materials with the smallest λI ; in ATLAS, for example, the
hadronic calorimeter consists mostly of iron. The nuclear interaction length
of iron is about 16 cm and the hadronic calorimeter is about 7λI in depth. This
captures almost all of the energy of hadrons produced in proton collisions. At
CMS, to ensure that the hadronic calorimeter has very low radioactivity, over
a million World War II brass shell casings from the Russian army were used
to make part of it.

5.4.3 Muon System
Muons are like electrons but 200 times more massive, and so lose much less
energy in ionization and bremsstrahlung. The classical intuition for this
property is that muons are accelerated less than electrons for the same force.
In classical mechanics, the energy loss per unit length is just the force that the
material exerts on the particle:

(5.25)

To measure a muon’s energy, we first give up hope that we can stop it in a
calorimeter.

At both ATLAS and CMS, outside of the hadronic calorimeter there is a
muon detection system. At ATLAS, it consists of detectors for tracking in a
high-tesla, toroidal magnetic field (and is where ATLAS gets its name).
CMS, by contrast, uses a high-tesla solenoidal magnet to bend muons (and is
where CMS gets its name). The “compact” of “compact muon solenoid”
refers to the fact that a CMS detector is about 7 meters smaller in diameter
than in ATLAS; see Fig. 5.2. Nevertheless, because of the compactness,



CMS is extremely dense, which ensures that the calorimetry can stop
particles and the muon system significantly bends the trajectory of muons.
Though much smaller than ATLAS, the weight of CMS is more than twice
that of ATLAS!

Focusing on the ATLAS muon system, the field lines of the toroidal
magnet form concentric circles about the proton beams. The toroidal
magnetic field is perpendicular to the solenoidal magnetic field in the
tracking system. Therefore, the trajectory of a muon is deflected in two
perpendicular planes from the tracking system to the muon system. This
enables a direct measurement all three momentum components of the muon.
The trajectory of a muon traveling through the detector would look
schematically like:

In this figure, the muon travels straight through the calorimeters where there
is zero magnetic field, as at the ATLAS experiment, while CMS has a
magnetic field throughout the detector. Because the calorimetry at ATLAS
and CMS is so good at stopping high-energy hadrons, essentially every
charged particle that makes it to the muon system is considered to be a muon.

5.4.4 Unobservable Neutrinos
The tracker, calorimetry, and muon system detects and measures the
momentum of almost all detector-stable particles. A detector-stable particle
is a particle which does not decay before it deposits its energy in the detector.
There are very few detector-stable particles: electrons, photons, muons, and a
handful of hadrons. These are all well measured by the detector, but there is
one more class of particle that is detector-stable but cannot be measured:
neutrinos. Like photons, neutrinos are electrically neutral and have very small
mass. Unfortunately, neutrinos interact incredibly weakly with matter, and so



the vast majority of the time pass right through all detector components
without so much as a “hello.” Indeed, in collider physics, we assume that
neutrinos do not interact with the detector. We will study the interactions of
neutrinos and justify their very weak interactions in Chapter 10.

However, this lack of direct measurement does not mean that neutrinos are
invisible or have no experimental consequences. We can see the effects and
existence of neutrinos indirectly. The total momentum transverse to the
proton beam is zero because the initial colliding protons have momentum
only along the ẑ-axis. If you measure a non-zero net p⊥ in the detector from
all of the observed particles, then a neutrino (or a few of them) must carry
away the unmeasured transverse momentum that is responsible for
conserving momentum. This missing momentum is often called missing
transverse energy and denoted by  or called simply MET (read: “met”).
While not necessarily always equivalent, the words “neutrino” and “MET”
are often used interchangeably in collider physics.

Now that we’ve discussed all components of the detectors, let’s look at a
couple of example event displays and attempt to understand the physics in the
proton collision responsible for the collection of particles observed.

Example 5.1 Figure 5.6 shows an event display from the ATLAS experiment
recorded in 2015. What happened in this collision of protons?

Solution
The inset panel of Fig. 5.6 in the upper-left corner is a head-on display with
the proton beam in the center, and the tracking, calorimetry, and muon
system at sequentially larger radii. This figure shows that there were many
observed tracks and large energy deposits in both the electromagnetic and
hadronic calorimeters. This suggests that this collision event produced
numerous hadrons. Note also that the energy deposits in the calorimetry are
relatively narrow (small angular spread) and back-to-back in the plane
transverse to the beam. This suggests that this event corresponds to the
production of two jets, which are collimated, high-energy streams of
particles. We’ll discuss jets and their physics in Chapter 9.



Fig. 5.6 Event display from the ATLAS experiment from May 21, 2015. Credit: ATLAS Experiment ©
2015 CERN.

The other two panels of Fig. 5.6 show different displays of this event. In
the upper-right corner, the figure is focused on the tracking system of the
detector, and shows the individual hits that combine to form tracks. Note that
although the tracking system does not extend all the way to the interaction
point, the identified tracks can be extended and all overlap, indicating the
location of the point where two protons collided. The panel at the bottom of
the figure shows the event with the proton beam in the plane of the page. The
charged tracks are visible in the center of this panel, and the high-energy



deposits in the calorimetry are visible as well.

Example 5.2 Now, let’s look at an event display from the CMS experiment,
Fig. 5.7, recorded in 2012. What happened in this collision of protons?

Solution
The CMS detector in this figure is artistically rendered as the light cylinder,
just to guide the eye. This event display shows the identified tracks as the
curves at the center of the figure, electromagnetic calorimetry deposits as the
bars extending to the edge of the figure, and hadronic calorimetry deposits as
the thick bars at the end of the cylinder. The most prominent features of this
event display are two high-energy deposits in the electromagnetic
calorimetry. Note that these high-energy deposits do not have corresponding
tracks leading to them; this is distinct from the previous event from ATLAS.
Thus, whatever produced these deposits must be neutral, so there are no
tracks, but must also interact electromagnetically. The only particle that
satisfies these criteria is the photon. Thus, this event corresponds to the
production of two high-energy photons from proton collision. In fact, this
event is evidence for the existence of the Higgs boson, which was initially
produced in the proton collisions and then subsequently decayed to photons.
We’ll discuss the Higgs boson, its properties, and its discovery in Chapter 13.



Fig. 5.7 Event display from the CMS experiment from May 13, 2012. Credit: CERN © 2012 CERN,
for the benefit of the CMS Collaboration.

Box 5.1 Historical Profile: Fabiola Gianotti

Fabiola Gianotti is an experimental particle physicist who earned her
Ph.D. fromthe University of Milan in 1989. Most of her career has been
spent on experiments at CERN, including the UA2 experiment, which was
on the Super Proton Synchrotron, and the ALEPH experiment, one of the
experiments on the Large Electron– Positron Collider. Most recently,
Gianotti was a member of the ATLAS experiment, becoming its
spokesperson from 2009 to 2013, and presented the ATLAS results of the
Higgs boson discovery on July 4, 2012. On January 1, 2016, Gianotti
became the first female Director-General of CERN, a position she holds
until 2020. She has been recognized with numerous awards, including
membership of the Accademia Nazionale dei Lincei (“Academy of the
Lynx-Eyed”), a 400-year old Italian science academy of which Galileo
Galilei was an early member. Gianotti is also a classically trained pianist.



5.5 After Collision: Triggering and Data
Acquisition
After collision, our detector has measured all the particles produced and we
then need to store this event for later analysis. We have to do this extremely
fast: the LHC collides 40 million proton bunches per second! The amount of
information contained in a complete event at the LHC is of the order of a
megabyte, so if every collision were recorded, the LHC would produce 40
terabytes of data per second. This is an enormous amount of data, and there’s
currently no way to record that much data in a time significantly less than a
second so that there isn’t a backlog of events to record. So, the experiments at
the LHC simply cannot store all proton collision events.

Why, then, is there such a high rate for proton collisions at the LHC? As
discussed earlier, the vast majority of the volume of a proton bunch is empty
space. Even though each bunch contains 100 billion protons, it is extremely
unlikely that any protons collide at all. Even if they do collide, most of the
time the collision is uninteresting: two protons might just bounce off of one
another, without exploding apart into many final-state particles. We therefore
need to collide proton bunches at an extremely high rate so that we can hope
to observe any interesting proton collisions at all. However, we don’t want to
record absolutely every proton collision event. ATLAS and CMS employ
triggers, which are requirements on observed particles that define what it
means to be an “interesting event.” An example of such a trigger might be the
observation of a muon with a transverse momentum p⊥ > 1 GeV. If an event
contains a muon that passes this requirement, then the event is recorded for
later analysis.

The trigger systems at ATLAS and CMS actually involve multiple layers
that perform their tests on different time scales, from simple questions about
energy deposits in the calorimetry to detailed questions about invariant
masses of collections of multiple particles observed in the detector. The total
number of events that pass all triggers and are actually recorded and stored
for later analysis is only about 100 to 1000 events per second. These
hundreds of events per second are sent from the detector to be stored on
magnetic tape. For the 39,999,000 events or so that do not pass the triggers



each second, it’s as if they never happened at all.
Once the events are recorded to tape, they are available to members of the

experimental collaborations for analysis. These data are then used to search
for new physical phenomena, such as a new particle, that were created in the
collision of the protons. Claiming discovery of a new phenomenon has an
extremely high bar in particle physics and requires a detailed understanding
and interpretation of experimental uncertainties. How is this done?



5.6 Statistical Analyses
The outcome of every physics experiment is a number or collection of
numbers that are distributed according to a probability distribution. This is
perhaps most apparent in quantum mechanics, where the wavefunction
represents the probability amplitude for a particle to be located at a particular
position, for example. However, this is true for any experimental result
because we can only ever do a finite number of measurements and any
measurement apparatus is imperfect. We can never measure energies, masses,
or charges with perfect, infinite precision; there is always some uncertainty
on the outcome values of an experiment. These can depend on numerous
factors and essentially represent our ignorance as to a perfect understanding
of the experimental response. A simple example of such a measurement
uncertainty is in the measurement of a distance with a tape measure. On a
tape measure, there are only so many ticks, and those ticks have a finite
width, so we can only use it to measure to, say, an eighth or sixteenth of an
inch (in imperial units). Additionally, it may be that the tape measure is
actually slightly off in what it claims. If an inch on the tape is really 1.01
inches, then this could lead to a significant measurement error if you’re
looking at something that is large enough.

Such uncertainties that correspond to measurement error are called
systematic uncertainties. In particle physics, determining systematic
uncertainties is extremely challenging and requires extensive understanding
of the response of the detector to many different particles with many different
energies. We’ve already seen an example of a systematic uncertainty in the
discussion of the tracking system. If a charged particle has high enough
transverse momentum, then it becomes increasingly challenging to measure
its curvature in the tracker, and therefore to determine its transverse
momentum. At some high enough transverse momentum, you can no longer
rely on the tracking system to accurately measure the curvature. While
systematic uncertainties are extremely important to model correctly, we will
instead focus on another source of uncertainty which we can understand and
model mathematically.



5.6.1 Statistical Uncertainties
This is a figure that represents a fair die; a six-sided cube with each side
individually numbered with pips:

As it is a fair die, we expect that there is probability of 1/6 for it to land with
any side up after a roll. That is, there is 1/6 probability that 1 will be up, 1/6
probability that 2 will be up, etc. Consider rolling the die 10 times and
tracking the sides that land up. Out of 10 rolls, how many do you expect to be
1? Naïvely, because 1 has 1/6 probability in any roll, we would expect 1 to be
up in 10/6 of the rolls. However, this is of course impossible because the
number of rolls must be an integer. So our expectation makes only so much
sense. In the limit that the number of rolls we make goes to infinity, then we
expect that indeed 1/6 of the rolls produce a 1, 1/6 produce a 2, etc., but in
any finite number of rolls that isn’t necessarily true.

A better question to ask is the following. Let’s roll the die 10 times again.
Given the outcome of those rolls, how surprised should we be that they were
the result of rolling a fair die? That is, with the assumption that the die is fair,
are the rolls likely or unlikely? For example, if you rolled 10 4s in a row, you
might be very surprised and question whether the die was fair at all.
However, if you rolled a healthy mixture of 1, 2, 3, 4, 5, and 6, you wouldn’t
likely question the fairness of the die. As we can only ever do a finite number
of rolls (or a finite number of experimental measurements), it is this question
that is fundamental. We need a way to determine how likely an outcome is,
given a null hypothesis. In this example, our null hypothesis is that the die is
fair, and so we roll it numerous times and calculate the probability that a fair
die would produce that outcome. If the probability is relatively large, then we
gain confidence that the die is indeed fair. However, if the probability is
extremely small, then we gain confidence that the die is not fair; we don’t



necessarily know how it is weighted, just that it is more consistent with being
not fair. Therefore, we need to quantify deviations from expectation in our
experiment.

This type of uncertainty, due to the finite number of measurements, is
called a statistical uncertainty, and represents the fact that any finite number
of measurements are expected to deviate from the true result by a well-
defined amount. This is true even with perfect experimental resolution, but
the effect of statistical uncertainties decreases as the number of events that
contribute to the measurement increases. To understand statistical
uncertainties, let’s assume that we are measuring some continuous quantity
that can be represented by x, which is a random variable distributed according
to a probability distribution p(x). Probability distributions are normalized:

(5.26)

where the integral extends over the entire domain of x. Probabilities are also
always positive, and so the integral over any subdomain x ∈ [a, b] is non-
negative and at most 1:

(5.27)

As a concrete example, we might consider measuring the invariant mass of
electron– positron pairs mll in the final state of proton collisions. As a mass,
mll ≥ 0 and so any value that we measure must respect this. As we collect
events, our goal is to determine the probability distribution from which the
masses mll are drawn. We can then compare this to predictions and draw
conclusions about the underlying physics. The first step, though, is to
approximate the probability distribution, p(mll). As the mass can be any
continuous number and we can only perform a finite number of
measurements, we need to make a discrete approximation of the continuous
probability distribution. That is, we construct a histogram, which consists of
bins, subdomains of the full distribution into which we put the number of
events observed that lie in that subdomain. This set-up is illustrated in Fig.
5.8.



Fig. 5.8 Illustration of a histogram of some measured quantity x. The subdomains of the histogram are
bins whose height is proportional to the number of events with a value of x that lies in that particular
subdomain. The continuous probability distribution p(x) from which the events are drawn is also
illustrated.

As we collect more and more measurements, we fill these bins
appropriately. To create a histogram that integrates to 1, just like the
fundamental probability distribution, we add an amount

(5.28)

to a bin for each event in it. Here, Nev is the total number of events in our
measurement sample and Δx is the width of the bin under question. Note that
this does correspond to integrating to 1:

(5.29)

Ni is the number of events in bin i, and the sum of all events in all bins is of
course Nev. That is, our approximation for the probability distribution that x
lies in the region of the bin about the point xi is

(5.30)

This can be made more precise in the limit that the number of events Nev →



∞. In this limit, and with the bin width Δx → 0, the law of large numbers
states that

(5.31)

This is a nice result if we can actually perform an infinite number of
measurements. What happens in the physically possible case, when Nev is
finite? How good an approximation is the histogram to the true probability
distribution?

5.6.2 Derivation of Poisson Distribution
It turns out that this question has a well-defined answer and is relatively easy
to derive. To do so, we will make a reasonable assumption that is typically
true, or at least assumed true, in particle physics analyses. We assume that
each event that contributes to a histogram is independent; that is, the
measured value from one event has no bearing on the measured value from
any other event. The consequence of this is that each event randomly samples
the probability distribution p(x) to produce a value x. Let’s call P the
probability to have a value within dx of x:

(5.32)

Then, the probability that a measured value is not within dx of x is of course 1
− P. Out of a total of Nev events, the probability that there are k events within
dx of x is therefore

(5.33)

The factor on the right,

(5.34)



is called a binomial number and is read as “Nev choose k” and is the number
of ways to pick k events out of a set of Nev total events. That is, to determine
the probability that k events landed near x, we need to choose k of them out of
Nev, and multiply by the probabilities that k are near x and Nev − k are not.

The probability distribution represented by Eq. 5.33 is called the binomial
distribution, for the following reason. The binomial formula represents the
expansion of a binomial expression:

(5.35)

Note that each term of the expansion has the form of Eq. 5.33. Indeed, this
proves that the binomial distribution is normalized:

(5.36)

This is therefore what we set out to identify. The binomial distribution tells
us the probability distribution of the number of events in a given bin,
according to some probability distribution p(x). We could stop here and
perform all the analyses that we need, but it turns out that a few more
assumptions are useful and make the analysis a bit simpler.

We will assume that Nev → ∞ with k finite, as well as assuming that P ≪
1, which is the limit in which the bins are becoming narrow. In this limit,
note that

(5.37)

and (1 − P)k ≃ 1, for finite k. With these simplifications, the probability for k
events in a bin becomes

(5.38)



This probability distribution is called the Poisson distribution. Note that it is
normalized:

(5.39)

The mean of this distribution is

(5.40)

which means that, on average, the number of events k in the bin will be
exactly Nev P. The variance of this distribution σ2 is also Nev P:

(5.41)

You will prove these statements in Exercise 5.5.
The variance of any probability distribution is a measure of the average

squared deviation from the mean. A measure of the average deviation from
the mean is called the standard deviation, which is the square-root of the
variance. In this case of the Poisson distribution, the standard deviation is
thus

(5.42)

A colloquial interpretation of the standard deviation is that you “expect” the
result of any experiment to deviate by about 1 standard deviation from the
true result. More precisely, the standard deviation is a measure of how
surprised we should be with the outcome of an experiment. If the outcome is
within 1 standard deviation of expectation, then there’s no surprise. However,
if the outcome is many standard deviations from expectation, then you gain
confidence that expectation is not truth. Also note that as more data are
collected, the relative size of the standard deviation to the mean decreases:

(5.43)



That is, it is more likely that there are large deviations will a small dataset
than a large dataset. Deviations from expectation that diminish with more
data were likely not interesting.

5.6.3 Significance and Discovery
The Poisson distribution and its standard deviation provide a metric for
determining our confidence in the null hypothesis. We typically say that a
particular measurement was “within 1 sigma,” or a “3-sigma excess,” for
example, which quantifies the importance of the deviation from expectation.
However, in physics in general and particle physics in particular, there are a
lot of measurements done, and a potential for significant deviations, even just
assuming the null hypothesis. How likely, or with what probability, is there
an excess in the data that is at least 3 standard deviations from the mean? One
can directly calculate this in principle using the binomial or Poisson
distribution, but the standard way to express it is by using a further statistical
simplification.

While we won’t prove it here, in the limit that the number of events Nev →
∞ and k is taken to be a continuous random variable, the Poisson distribution
simplifies to the Gaussian distribution:

(5.44)

This result is known as the central limit theorem. This Gaussian distribution
is normalized:

(5.45)

For compactness in what follows, we will just denote the expected number of
events in a bin as N ≡ Nev P. The Gaussian distribution still has a mean of N
events and standard deviation of  but this form enables us to calculate the
probability of deviation from the mean in a universal manner.

Using the Gaussian distribution, let’s calculate the probability that there
was a deviation that was at least Xσ above the mean. This is called the p-



value of the deviation and requires integrating from  to ∞:

(5.46)

In the second line, we have changed variables so that the Gaussian
distribution over which we are integrating has a mean of 0 and a standard
deviation of 1. Then, this integral can be evaluated in terms of the error
function erf:

(5.47)

As a sense of these values, the probability of a deviation at least at large as 1
sigma is p1 ≃ 0.16, at least 3 sigma is p3 ≃ 0.0013, and at least 5 sigma is p5 ≃
2.9 × 10−7. There is an unofficial, yet ubiquitous, standard in particle physics
that a claim of discovery can only be made if the deviation from the null
hypothesis is at least 5 sigma. This is the most rigorous such standard in all
of science.

Example 5.3 Figure 5.9 is a plot from the CMS experiment of the number of
events versus the measured invariant mass of pairs of photons, mγγ. This plot
was used as evidence for the discovery of the Higgs boson, which has a mass
of about 125 GeV. What is approximate the statistical significance of this
excess?

Solution
Focus on the inset plot in the upper right corner. This plot shows the number
of observed events (the dots) and the number of expected events from the null
hypothesis of no Higgs boson (the smooth curve). In the three bins near 125
GeV, there are approximately 3400 events expected from the null hypothesis.
The standard deviation, assuming Poisson statistics, is therefore 
The number of observed events in those same bins is about 3600, nearly 4
standard deviations away from the null hypothesis! With more detailed



analysis and statistical methods, the CMS experiment produced the main plot,
which weights the observed events in a particular way to isolate the excess
further.

Fig. 5.9 Invariant mass distribution of photon pairs mγγ collected in proton collisions at the CMS
experiment up through the end of June, 2012. The bump near a mass of 125 GeV is now known to be
the Higgs boson. Reprinted from Phys. Lett. B 716, S. Chatrchyan et al. [CMS Collaboration],
“Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” 30 (2012),
with permission from Elsevier.



Exercises
5.1 Synchrotron Losses. Synchrotron radiation can be a significant source

of power loss in a circular collider. The amount of synchrotron
radiation depends sensitively on accelerator parameters, so different
experiments have to deal with synchrotron radiation in different ways.
In this exercise, we will see how important synchrotron radiation can
be.

(a) In the LHC ring at peak performance, there are 2808 bunches of
1.15 × 1011 protons with each proton having an energy of 6.5
TeV. How much total power is emitted in synchrotron radiation
when the LHC is running? Express the answer in GeV · s−1 and
watts (J · s−1). How does this compare to a microwave oven,
which typically uses 1000 W?

(b) The Large Electron–Positron Collider (LEP) collided electrons
and positrons at a maximum center-of-mass energy of 206 GeV.
LEP occupied the same tunnel where the current LHC ring is
situated. How much power was emitted in synchrotron radiation
from an electron at LEP?

(c) One reason why the LHC can collide protons at much higher
energies than LEP collided electrons and positrons is that the
synchrotron radiation from protons is much less than for
electrons. For the same power in synchrotron radiation, how
much larger could the proton energy at the LHC be compared to
electrons at LEP?

5.2 Limits of the Tracking System. The tracking system at ATLAS is a
cylinder with an outer radius of 1.1 meters which contains a 2 T
solenoidal magnetic field, i.e., the magnetic field lines are parallel to
the axis of the cylinder. Immediately outside of the tracking system is
a region of zero magnetic field, where the electromagnetic calorimeter
is located.

(a) The energy of charged particles that do not leave the tracking



system is poorly measured because those particles do not reach
the calorimetry. Estimate the minimum p⊥ in GeV for an
electron to reach the calorimetry.

(b) The semiconductor tracker is a subsystem of the tracker that is
also a cylinder, but with an outer radius of 0.5 meters. It consists
of layers of silicon that can measure particle positions accurate to
17 micrometers. Extremely high-energy charged particles do not
bend enough in the magnetic field to have their charge accurately
measured. Estimate the maximum p⊥ in GeV of an electron
whose path the semiconductor tracker can determine was bent in
the magnetic field.

(c) For a high-p⊥ track that just bends in this magnetic field, what is
the uncertainty in the measurement of the p⊥? Estimate this
using the resolution of the silicon tracking system.

5.3 Reconstructing Muons. Because muons are not stopped by the
calorimetry, it is harder to determine their momentum four-vector. At
ATLAS, for example, the distinct magnetic fields of the tracking
system and the muon system come to the rescue. The magnetic field
of the tracking system is solenoidal, with a strength of Bsol tesla. The
magnetic field of the muon system is toroidal, i.e., field lines form
concentric circles about the beam, with a strength of Btor tesla. If a
muon is observed to have a radius of curvature of Rsol in the tracking
system and radius of curvature of Rtor in the muon system, determine
the magnitude of the transverse momentum p⊥ and ẑ-component pz of
the muon. Express your answer in terms of the elementary charge, the
strength of the magnetic fields, and the curvature radii.

Hint: What components of momentum are perpendicular to the
magnetic field in the tracking system? What about in the muon
system?

5.4 Data Quantity from the LHC. Data management at the LHC is a
serious issue. Even though only about 100 proton collision events per
second are actually recorded to tape, over the time that the
experiments run, this adds up to an enormous amount of data.
Estimate, in petabytes (1015 bytes), the amount of data stored on



magnetic tape from the ATLAS and CMS experiments over a year.
The experiments are only collecting data for a total of a couple of
months per year.

5.5 Properties of Poisson Statistics. In this chapter, we derived the
Poisson distribution as the distribution of the number of events in a
bin about the mean. The probability to observe n events in a Poisson
distribution with a mean of λ is

(5.48)

where n is a non-negative integer.

(a) Calculate the mean 〈n〉 of this distribution and show that it indeed
is λ.

(b) Calculate the variance σ2 = 〈n2 〉 − 〈n〉 2 of this distribution and
show that it is λ.

Hint: Consider the derivatives with respect to λ of

(5.49)

5.6 Look-Elsewhere Effect. Often in experimental particle physics it is
known where to look for a signal. For example, if you want to study
the properties of the Z boson, then you can tune the collision energy
of your e+ e− collider to the mass of the Z boson. However, when
searching for possible new physics, where the mass scale is unknown,
experimentalists look for excesses over many bins. Purely as a result
of finite statistics, one will find excesses when enough bins are
considered. Thus, the significance of an excess in any one bin is
reduced, simply because that excess could have been anywhere. This
is called the look-elsewhere effect.

(a) Assume you are looking for excesses in a collection of Nbins bins
of data. Let’s also assume that you only think that excesses are
interesting if they deviate by more than Xσ from the expected



number of events in a bin. If the probability for any one bin to
have an excess of at least Xσ is pX, determine the probability that
at least one of the Nbins bins has such an excess. In this problem,
only assume that the different bins are independent; don’t
assume anything in particular about the probability pX.

(b) Now, expand your result from part (a) to lowest order in the limit
where pX → 0. How much larger is the probability for at least
one bin to have an excess than pX ? Show that the probability 

 of an excess at least as large as Xσ anywhere in your data
is

(5.50)

(c) Excesses are considered “interesting” or “evidence” if they are at
least a 3σ deviation from the expected value from the null
hypothesis. If the local significance (the significance in one bin)
of an excess is 3σ, what is the global significance, which
includes the look-elsewhere effect? A typical number of bins in
an analysis is about 100, which you can assume for this problem.
Including the look-elsewhere effect, do you think such an excess
is still interesting?

(d) On December 15, 2015, the ATLAS and CMS experiments held
a press conference at which they presented results for the
measurement of the invariant mass of pairs of photons, mγγ.4

Both experiments observed an excess in their data above the null
hypothesis around a mass scale of mγγ = 750 GeV.

This excess was later named  (read: “di-gamma”), and
inspired a deluge of responses from theorists who wrote more
than 500 papers over the next year attempting to explain this
excess. A plot of ATLAS’s data that demonstrates this excess
is presented in Fig. 5.10.



Fig. 5.10 A plot of the invariant mass of pairs of photons mγγ in a search for new physics by
the ATLAS experiment in 3.2 fb−1 of data at 13 TeV proton collision energy. The excess in
the three bins around mγγ = 750 GeV caused a flurry of activity to attempt to describe it. From
M. Aaboud et al. [ATLAS Collaboration], “Search for resonances in diphoton events at 

 with the ATLAS detector,” J. High Energy Phys. 1609, 001 (2016),
doi:10.1007/JHEP09(2016)001 [arXiv:1606.03833 [hep-ex]].

(i) Estimate the local significance σlocal of the  excess. To
do this, use the three bins that range over 720–780 GeV
to calculate the significance and ignore the look-
elsewhere effect. Would you be interested in such an
excess?
If you were inspired by the excess in the CMS data,

then the excess in ATLAS data would have no look-



elsewhere effect because you knew to look around 750
GeV.

(ii) Estimate the global significance σglobal of the  excess.
Use the same bins as in part (i) and now include the
look-elsewhere effect. To include the look-elsewhere
effect, you will need to determine how many sets of
three neighboring bins there are in these data. You can
safely use the approximation you derived in part (b).
Would you be interested in such an excess?
If you were not inspired by the excess in the CMS data,

then the excess in ATLAS data would have a look-
elsewhere effect because you did not know to look
around 750 GeV.

(iii) Assuming that this excess is just a statistical fluctuation
of the null hypothesis, how many more events need to
be added to these three bins to reduce the local
significance of the excess to 1σ?

By summer 2016, the  excess had vanished; apparently it was just
a statistical fluctuation.

5.7 Discovery of the Top Quark. The top quark was discovered in 1995 at
the CDF and  experiments on the Tevatron collider located at
Fermi National Accelerator Laboratory (Fermilab).5 Figure 5.11 is a
plot presented as evidence for discovery from the CDF (Collider
Detector at Fermilab) experiment. Do you believe their claim of
discovery?



Fig. 5.11 Reconstructed mass distribution from candidate top quark events measured at the CDF
experiment. The solid histogram is their recorded data and the dotted histogram is the prediction from
the null hypothesis. Reprinted figure with permission from F. Abe et al. [CDF Collaboration], Phys.
Rev. Lett. 74, 2626 (1995). Copyright 1995 by the American Physical Society.

(a) The null hypothesis predicts a total of  events to have been
measured and to contribute to this plot. How many total events
were observed? How significant is this? Assume Poisson
statistics and just use 6.9 as the expected number of events.

(b) Assuming the null hypothesis in which there is no top quark,
what is the probability for these events to be observed? Is their
claim of discovery justified?

5.8 Missing Energy and Neutrinos. The most precise method for
measuring the mass of the W boson is in its decays to a charged lepton
l (an electron or muon) and a neutrino ν:



(5.51)

We’ll discuss the properties of this interaction in Chapter 12. Here,
we will work to understand this measurement.

As discussed in this chapter, neutrinos are not directly observed in
collider physics experiments, so we aren’t able to measure the
invariant mass of the charged lepton and neutrino. Also, in proton
collisions, a W boson can be produced with a range of momenta along
the beam axis, called longitudinal momentum, in the process

(5.52)

Therefore, we are restricted to measuring the transverse momentum of
the visible particle, the charged lepton. In the following, assume the
W boson is on-shell and the leptons are massless.

(a) In the process pp → W → lν at the LHC, what is the maximum
value of the p⊥ of the charged lepton?

(b) In this process, what is the maximum transverse mass  of the
W boson? This can be defined from the transverse masses of the
charged lepton  and neutrino  and their respective
transverse momentum vectors  and  as

(5.53)

(c) Figure 5.12 is a plot from the ATLAS experiment of the
transverse momentum distribution of electrons in events with
electrons and missing energy. This distribution is used for
precision measurement of the W boson mass. From this plot and
your result in part (a), can you estimate the W boson mass? Can
you identify where on the plot the maximum value of the
electron transverse momentum would be? If not, why not?



Fig. 5.12 Plot of the transverse momentum of the electron in  events.
From M. Aaboud et al. [ATLAS Collaboration], “Measurement of the W-boson mass in pp
collisions at  with the ATLAS detector,” Eur. Phys. J. C 78, no. 2, 110 (2018),
doi:10.1140/epjc/s10052-017-5475-4 [arXiv:1701.07240 [hep-ex]].

The analysis in which this plot was presented produced one of
the most precise measurements of the W boson mass, accurate to
a few parts per 104.

5.9 Event Displays. Figure 5.13 is an event display from the ATLAS
experiment. The large image is a head-on view of the ATLAS
experiment, with the tracker, calorimeters, and muon system visible.
At the center right, underneath the ATLAS logo, is a so-called Lego
plot. (Can you tell why it is called that?) This “unrolls” the detector,
and displays the distribution of p⊥ deposited in the (η, ϕ) plane.

(a) Based on the “hits” in the tracker, EM calorimeter, hadronic
calorimeter, and muon system, identify the particle type of the
light and dark spikes in the Lego plot. Both light particles are
identical as are both dark particles, but light ≠ dark.

Hint: The azimuthal angle in the head-on figure is measured



with respect to the right, horizontal axis; i.e., ϕ = 0◦ is to the
right, ϕ = 90◦ is vertically upward, etc.

(b) From the Lego plot, determine the four-vectors of each of the
light and dark particles. A zoomed-in view of the Lego plot is
provided in Fig. 5.14. You can safely neglect the particles’
masses. With these four vectors, answer the following questions:

(i) What is the total transverse momentum vector of the
four particles?

(ii) What is the invariant mass of the four light and dark
particles together? That is, sum their four-momenta and
square it. Which particle of the Standard Model does
this mass correspond most closely to?

(iii) Approximately what is the speed of this particle along
the proton beam direction (the ẑ-axis)? To estimate this,
approximate the velocity transverse to the beam as 0.



Fig. 5.13 Display of a proton collision event from July 25, 2016 in the ATLAS experiment.
Credit: ATLAS Experiment © 2018 CERN.



Fig. 5.14 Zoom-in of the Lego plot from the proton collision event from July 25, 2016 in the
ATLAS experiment. Credit: ATLAS Experiment © 2016 CERN.

5.10 Research Problem. Is there a better way to do particle physics
experiments than to collide particles and observe what comes out?

1 See, for example, D. J. Griffiths, Introduction to Electrodynamics, 4th ed., Cambridge
University Press (2017).

2 Details about the ATLAS and CMS experiments are available in G. Aad et al. [ATLAS
Collaboration], “The ATLAS experiment at the CERN Large Hadron Collider,” J. Instrum. 3,
S08003 (2008); S. Chatrchyan et al. [CMS Collaboration], “The CMS experiment at the CERN
LHC,” J. Instrum. 3, S08004 (2008).

3 H. Bethe, “Theory of the passage of fast corpuscular rays through matter,” Annalen Phys. 397,
325 (1930).

4 M. Aaboud et al. [ATLAS Collaboration], “Search for resonances in diphoton events at 



 with the ATLAS detector,” J. High Energy Phys. 1609, 001 (2016)
[arXiv:1606.03833 [hep-ex]]; V. Khachatryan et al. [CMS Collaboration], “Search for resonant
production of high-mass photon pairs in proton–proton collisions at  and 13 TeV,” Phys.
Rev. Lett. 117, no. 5, 051802 (2016) [arXiv:1606.04093 [hep-ex]].

5 F. Abe et al. [CDF Collaboration], “Observation of top quark production in pp collisions,”
Phys. Rev. Lett. 74, 2626 (1995) [arXiv:hep-ex/9503002]; S. Abachi et al. [D0 Collaboration],
“Observation of the top quark,” Phys. Rev. Lett. 74, 2632 (1995) [hep-ex/9503003].



6

Quantum Electrodynamics in e+ e− Collisions

It’s time to put the tools we’ve acquired over the last several chapters to use.
The simplest scattering process that we can consider is the collision of
electrons with positrons within the quantum theory of electrodynamics, QED.
There are manifold reasons for this simplicity. Electrons and positrons are
both fundamental, point particles and so the dynamics of collision is
straightforward. Electrons and positrons interact through electromagnetism
and so we are able to take a familiar force and leverage it to understand
unfamiliar phenomena. Electrons and positrons have relatively small masses
compared to the center-of-mass collision energies that we study, so to good
approximation we can assume they are massless. This enables a description
in terms of helicity states which makes analyses of angular momentum
conservation, for example, transparent.

Our first task in this chapter is to finish what we started in Chapter 4 with
the calculation of the Feynman diagram for e+ e− → μ+ μ− scattering.
Through this Feynman diagram and constructing the cross section, we will
learn what the cross section tells us about properties, like the intrinsic spin, of
the scattering particles. This intuition will be useful when we observe hadron
production from electron–positron collisions. To understand, interpret, and
predict the process e+ e− → hadrons, we will need to develop the notion of an
inclusive cross section and construct a mapping to the hadronic final state
from the process e+ e− → qq, where q (q) is a quark (anti-quark). The
observation that we can study quarks and their properties in electron–positron
collisions will be our entry into studying quantum chromodynamics, or QCD.



6.1 e + e− → μ+ μ−

Our first goal is to calculate the matrix element M(e+ e− → μ+ μ−)

represented by the Feynman diagram

(6.1)

We assume that all external particles are massless, so we are working in the
limit in which the center-of-mass collision energy is much larger than the
mass of the muon (mμ ≃ 106 MeV). To complete this calculation, there are
several things we need to do:

determine the massless solutions to the Dirac equation to describe the
external electrons and muons
identify the allowed helicity configurations of the process e+ e− → μ+ μ−

mediated by electromagnetism
actually calculate the Feynman diagrams for the helicity configurations
that are allowed.

6.1.1 Solutions to the Massless Dirac Equation
Let’s begin. The massless Dirac equation is

(6.2)

Because the γ matrices are four-dimensional, this one expression represents
four first-order differential equations. Therefore, there will be four solutions.
To solve it, we will work with γ matrices in the Weyl or chiral representation,
where



(6.3)

with

(6.4)

The σi are the Pauli spin matrices,

(6.5)

The power of the Weyl representation is that we can express the four-
component spinor ψ in terms of two two-component spinors, ψL and ψR:

(6.6)

Plugging this into the Dirac equation, we find that it separates into two
equations:

(6.7)

These are called the Weyl equations. The solutions to iσ · ∂ψR = 0 are right-
handed helicity fermions, while the solutions to  are left-handed
helicity fermions. These names will be clear shortly.

Let’s solve iσ · ∂ψR = 0 in the standard way. We write

(6.8)

for some two-component spinor uR and four-momentum p. We then have

(6.9)

First, for illustration, we consider the particle’s three-momentum  aligned
along the +ẑ-direction and energy E > 0. Then, the dot product of the σ matrix
and the momentum is



(6.10)

Note that p0 = E and by the masslessness condition, E = |⃗p| = pz. Therefore,
the solution to (σ · p)uR = 0 is

(6.11)

That is, this fermion is “spin-up,” or its spin is aligned with the direction of
motion, which is right-handed or +-helicity. To ensure that probabilities sum
to 1, this spinor is normalized by the energy of the fermion as

(6.12)

Then, the spinor’s inner product with itself is normalized as  You
will study the origin of this normalization in Exercise 6.2.

In the more general case where the momentum  is at an angle θ with
respect to the +ẑ-axis and an angle ϕ about the +ẑ-axis, we can still determine
the solution to the Dirac equation. In this case, the four-momentum is

(6.13)

and so

(6.14)

In this expression, we have explicitly included the momentum dependence of
the spinor as uR (p). Written in matrix form, this becomes

(6.15)

The properly normalized solution to this eigenvalue equation is

(6.16)



Note that for θ → 0 and choosing ϕ = 0,

(6.17)

which has the correct limit as the solution for spin-up along the ẑ-axis. Note
also that uR (p) † uR (p) = 2E, as required.

The negative-energy solutions (anti-particles) and the left-handed solutions
can be found similarly. For momentum p expressed in spherical coordinates,
the eigenvalue equation for the negative-energy solution vR (p) to the right-
handed Weyl equation is

(6.18)

Now, however, the energy of this particle is p0 = −E < 0. Written in matrix
form, we have

(6.19)

This equation is satisfied by the properly normalized solution

(6.20)

Similarly, the left-handed, positive-energy solution uL (p) satisfies the
eigenvalue equation

(6.21)

or that

(6.22)

That is, as two-component spinors, vR and uL satisfy the same eigenvalue
equation! In a similar way, uR and vL satisfy the same eigenvalue equation.



Therefore, the spinor solutions to the Dirac equation are

(6.23)

These spinors are normalized:

(6.24)

and different spin solutions are orthogonal:

(6.25)

These four solutions, uR, uL, vR, and vL, are the four solutions to the Dirac
equation, Eq. 6.2.

6.1.2 Helicity Configurations
With the solutions of the massless Dirac equation in hand, we now turn to
determining the helicity configurations of the electrons and muons that are
consistent with angular momentum conservation. We introduced how to do
this in Chapter 4, but we’ll finish that discussion here, especially now that we
know the spinors that describe left- and right-handed helicity particles.

From earlier, the Feynman diagram for the process e+ e− → μ+ μ− is

The intermediate photon is spin-1, and so the helicities of the e+ e− pair and
the μ+ μ− pair must combine into spin-1. This means that, for electrons
colliding in the center-of-mass frame, a configuration like



which has a net spin of 1 is allowed. By contrast, a configuration like

is not allowed, as the spins sum to a total spin of 0. This demonstrates that the
allowed configurations by angular momentum conservation are all of those
for which the e+ and e− have opposite helicities and the μ+ and μ− have
opposite helicities. All non-zero probability helicity configurations of the e+ e
− → μ+ μ− scattering process are therefore

(6.26)

with the helicities of the particles denoted by the subscripts.
There’s a bit more simplification we can do. Let’s evaluate the electron–

positron–photon vertex with a particular choice of helicities:

(6.27)

Because we are working with two-component spinors defined by the Weyl
equations of Eq. 6.7 in this chapter, the electron–positron–photon vertex is
proportional to a 2 × 2 Pauli spin matrix, instead of a 4 × 4 γ matrix. To
remember whether the Pauli matrix is σμ or  in this vertex, it is the matrix
that appears in the appropriate Weyl equation. When this vertex is evaluated
for a particular choice of momenta p1 and p2, it returns some four-vector with



complex number elements. Let’s see what happens when we complex
conjugate this vertex. We find

(6.28)

Complex conjugation turns an initial state into a final state! This is a
manifestation of the action of CPT that we discussed in Section 3.4, which
we’ll dive into more in Chapter 10.

For now, this observation relates matrix elements that will simplify our
calculation. For example, complex conjugation yields

(6.29)

This may not seem immediately useful because the initial and final states
have been flipped. However, we are assuming that all external particles are
massless, and so the only difference between electrons and muons is their
name, which is just a label. As long as particles and anti-particles of the same
label maintain the same label, the matrix element must be unchanged. So, we
are free to relabel the muons as electrons and vice-versa in 

 Therefore, we have the series of equalities

(6.30)

In the calculation of the cross section from Fermi’s Golden Rule, we always
take the absolute square of the matrix element. Because of this, we don’t care
about the fact that complex conjugation relates these processes, as all three
matrix elements have the same absolute square. We only have to calculate the
absolute squared matrix elements of two non-zero helicity configurations and
the other two are identical:

(6.31)

The only two Feynman diagrams we need to calculate are then



(6.32)

We will calculate them in our first example of this chapter.

Example 6.1 What are the values of the two Feynman diagrams of Eq. 6.32?

Solution
In Section 4.3.2, we had found that the first diagram evaluated as

This is Lorentz invariant, and so can be evaluated in any frame. Let’s choose
the center-of-mass frame, where the e+ and e− have 0 net momentum and
collide head-on. Then, we can express their momenta as

(6.34)

where Ecm is the total energy of the e+ e− system. Their spinors are then

(6.35)

because 2E = Ecm. To determine the spinor for momenta p2, note that its
momentum is opposite that of p1. Negating momentum in spherical
coordinates requires two steps: transforming the polar angle θ → π − θ and
transforming the azimuthal angle ϕ → ϕ + π. Using the general expression for
momentum in spherical coordinates, Eq. 6.13, one can show that this indeed
flips momentum. Such a transformation is called a parity transformation.
Then, their spinor product with a σ matrix is



(6.36)

Only σ1 and σ2 have non-zero off-diagonal entries, which is why they remain
on the second line of this equation.

To evaluate the Feynman diagram requires also calculating the spinor
product  To do this, we need to know the muon and anti-muon
momenta, k1 and k2. By energy–momentum conservation, the energies of the
muon and anti-muon are both Ecm /2 and we can choose the frame in which

(6.37)

Then, the spinors are

(6.38)

The spinor product is then

(6.39)
(6.40)

That is,

(6.41)

The dot product of the spinor products is therefore

(6.42)



Noting also that  and combining all the factors, we finally
find that the Feynman diagram for this helicity configuration is

(6.43)

The Feynman diagram for the other spin configuration that we need to
calculate is

The nice thing about this Feynman diagram is that we can reuse the
calculation for the muon spinor products from Eq. 6.41. We just need to
calculate the spinor product for the new helicity configuration of the electron
and positron:

(6.45)

The dot product for this helicity configuration is then

(6.46)

Then, the Feynman diagram is

(6.47)



We’ve now calculated our first Feynman diagrams! With these scattering
amplitudes in hand, how do we go from these to probabilities? In principle,
we can measure whether a particle is an e+, e−, μ+, or μ− by a charge and mass
measurement. As discussed in Chapter 5, by passing a charged particle
through a magnetic field, we learn the charge by the direction of trajectory
bending and the momentum by the curvature. Additionally, we can, in
principle, measure the spin of the electrons and muons via a Stern–Gerlach
experiment, for example.1 A Stern–Gerlach experiment is set up with a
charged particle with non-zero spin passing through an inhomogeneous
magnetic field. Because of its spin and charge, the particle therefore has a
magnetic moment, and so will be deflected in the field. Spin-1/2 particles are
deflected either up or down, representing the particle in the up- or down-spin
state, respectively. Because we can, in principle, therefore conceive of
experiments that can distinguish particle type, electric charge, and spin, the
processes  and  are physically distinct.
Therefore, they cannot interfere quantum mechanically.

This means that each of these processes distinguished by particle spin or
helicity add together at the probability or scattering amplitude squared level.
So, all that matters in calculating the cross section for e+ e− → μ+ μ−

scattering are the four squared matrix elements:

(6.48)

Let’s figure out how to make a cross section from them.

6.1.3 Calculating the Cross Section
To calculate the cross section, we need to think a bit more about our
experimental setup and what we measure. Typically, we accelerate and
collide unpolarized electrons and positrons. Unpolarized means that on
average the electrons and positrons have probability 1/2 to have right-handed
helicity and probability 1/2 to have left-handed helicity. Therefore, we should
average over all possible configurations of the initial e+ and e− helicities.
There are four possible pairs of helicities (LL, LR, RL, and RR) and so we



should multiply the sum of initial electron–positron helicity configurations by
1/4.

Also, our experiments are not typically sensitive to the final-state muon
and anti-muon helicities; they just collect muon four-momenta. Because the
experiment does not preferentially detect any particular helicity, we should
sum the probabilities of the possible final-state helicities. Just as with the
initial state, there are four possible muon–anti-muon helicity configurations,
though some of the configurations have zero probability because they do not
conserve angular momentum. Accounting for the initial-state averaging and
final-state summing of the squared matrix elements, we have

(6.49)

The sum of matrix elements is just the sum of the four non-zero matrix
elements given in Eq. 6.48. Now, we can insert this into the expression for
the cross section, by Fermi’s Golden Rule:

Here, Ee+ and Ee− are the positron and electron energy, respectively.
The expression for the summed and averaged cross section in Eq. 6.49 is

already in terms of the scattering angle θ. We can therefore just take the
result from Example 4.2 in Chapter 4 in which we evaluated the phase space
integrals, leaving only an integral over the scattering angle. Using the result
from that example, the cross section then becomes

(6.51)

In the center-of-mass frame, the positron and electron energies are 2Ee+ =
2Ee− = Ecm, where Ecm is the center-of-mass energy. The relative velocity of
the electron and positron is just  because they collide head-on



and we approximate both as massless. Finally, the magnitude of final-state
momentum  because the muon and anti-muon are approximately
massless and the total momentum is zero in this frame. Inserting all these
pieces, we then find

(6.52)

The factor that controls the size of this cross section is the fine structure
constant α:

(6.53)

which is a dimensionless, pure number. In any unit system it has the same
value, which is approximately α ≃ 1/137. If we remove the integral over the
scattering angle in the cross section, we find the cross section differential in
the scattering angle θ or just differential cross section:

(6.54)

This angular distribution can be plotted and compared to data. Figure 6.1
shows data of the scattering angle in e+ e− → μ+ μ− collisions measured by
the HRS experimental collaboration. Excellent agreement is observed,
consistent with our expectation that electrons and muons are spin-1/2
particles. The deviations from the 1 + cos2 θ prediction can be accounted for
by including the effects of the Z boson mediating the scattering.



Fig. 6.1 Distribution of the scattering angle cos θ in e+ e− → μ+ μ− collisions at a center-of-mass energy
Ecm = 29 GeV. The dots represent the data and are compared to the 1 + cos2 θ shape prediction
represented by the dashed curve. The data come from M. Derrick et al. [HRS Collaboration], “New
results on the reaction e+ e− → μ+ μ− at  Phys. Rev. D 31, 2352 (1985).

We can also calculate the total cross section by integrating over cos θ:

(6.55)

This cross section can then be used to calculate the total number of e+ e− → μ
+ μ− events in a collision experiment. Including the value of α in this
expression and changing units to barns, the value of the total cross section is
approximately

(6.56)

For a center-of-mass collision energy of order of a GeV, this cross section is
about a million times smaller than the total cross section for pp collisions (see
Fig. 4.2). So, the process e+ e− → μ+ μ− occurs about a millionth as often as a
proton–proton collision at high energies.



6.1.4 Inclusive Cross Sections
The cross section we just calculated is called an inclusive cross section
because it is a good approximation to the cross section for e+ e− → μ+ μ− plus
anything else in the final state. This inclusive process is denoted by

(6.57)

where X can be anything. That is, X can be nothing (as we studied here), or it
can be a photon, or five photons, or an e+ e− pair, etc. That is, this inclusive
cross section is shorthand for a sum over an infinite number of cross sections:

(6.58)

The process e+ e− → μ+ μ− is a good approximation to the inclusive cross
section because α is small. For example, note that the cross section for e+ e−

→ μ+ μ− γ scales like

(6.59)

The amplitude for emitting a photon is proportional to the fundamental
charge e, which is squared in the cross section. The cross section σ(e+ e− → μ
+ μ− γ) is about 100 times smaller than σ(e+ e− → μ+ μ−). In general, the cross
section scales like α to the power equal to the number of final-state particles.
That is, we can approximate the inclusive cross section as

(6.60)

where O(α) means “on the order of α.” Then, to an accuracy of about 1% (≈

α), σ(e+ e− → μ+ μ− + X) ≃ σ(e+ e− → μ+ μ−); nevertheless, one can calculate
the corrections suppressed by α and find excellent agreement with data.

The utility of inclusive cross sections comes from their generality. It is
relatively easy to measure inclusive cross sections in experiment and to
collect a large number of events. This is because all we need to identify in the
final state are a muon and an anti-muon; we don’t care about anything else in
the event. Inclusive cross sections are therefore often used for precision



extraction of fundamental parameters. For example, in the case of inclusive
e+ e− → μ+ μ− collisions, we can make theoretical predictions by calculating
Feynman diagrams to whatever order in α that we are strong enough to get to,
and then integrate the resulting squared matrix elements over the appropriate
phase space to determine the cross section. Correspondingly, we can measure
the inclusive cross section for e+ e− → μ+ μ− collisions in experiment and
compare the measurement to our prediction. Our theoretical prediction
depends on some number of parameters (in the case of the calculation we just
completed, it only depends on the value of α), and those parameters can be
varied to optimally fit the data. This fit to data then constitutes a
“measurement” of the parameters of the cross section. Measurement is in
quotes because actually defining the parameters of the cross section precisely
takes some care, but can be done consistently. To do so requires
renormalization of those parameters; we’ll briefly touch on renormalization
in Chapters 8 and 9.

6.1.5 Exclusive Cross Sections
While σ(e+ e− → μ+ μ−) is a good approximation for the inclusive cross
section, it is not a good approximation for the cross section of the exclusive
process

(6.61)

By “nothing,” I mean that the final state consists exclusively of a muon and
an anti-muon, and nothing else. “Nothing” is an extremely subtle thing in
quantum field theory, and so typically we don’t require such a strong
restriction on the final state. More generally, an exclusive process is a
process in which there is at least one restriction on the phase space of the
final state. For example, we might impose that the energy in final-state
particles that are not the muon and anti-muon must be less than 1 GeV. Then,
we would want to predict the cross section for the process

(6.62)

Or, we might require that the muons are relatively isolated. That is, we forbid
any photons within an angle of, say, 0.5 radians of the muon or anti-muon.



Then, we want to predict the cross section for the process

(6.63)

The reason why our prediction for σ(e+ e− → μ+ μ−) is not a good
approximation for these or any exclusive processes is that the definition of an
exclusive process introduces at least one new energy scale. In the inclusive
cross section, we are completely agnostic as to the energy of the muons or the
energy of any other particles in the final state. All we care about is the energy
scale introduced by the center-of-mass collision energy and the existence of
the muon in the final state. Indeed, this is all our prediction specified. By
contrast, for the exclusive process of forbidding other particles to have a total
energy above 1 GeV, we are now not only sensitive to the center-of-mass
energy. We now care about the center-of-mass energy and the energy scale of
1 GeV. Nothing in our prediction for σ(e+ e− → μ+ μ−) specified this second
energy scale, and so we don’t expect it to be a good approximation for the
exclusive process. To predict the exclusive cross section requires
consistently accounting for all energy scales defined in the problem.

While most of our focus in this book will be on inclusive cross sections
and their importance, we will discuss how to make predictions for a particular
exclusive cross section in Chapter 9. Essentially, the existence of multiple
energy scales in an exclusive process means that there are dimensionless
ratios of energies that can be quite large. These dimensionless ratios will
appear in our predictions at every order in the expansion in powers of α, and
can potentially spoil the nice convergence properties of the perturbative
Feynman diagram expansion.

For example, our calculation of σ(e+ e− → μ+ μ−) is just one contribution to
the prediction of the cross section of the exclusive process for restricting the
energy of all particles other than the muons in the final state to be less than 1
GeV. Because there are no other particles in the final state, this somewhat
trivially satisfies the requirement. This prediction scales like the square of the
fine structure constant, σex (e+ e− → μ+ μ−) ∝ α2, where the “ex” superscript
denotes the exclusive cross section. However, it is also possible that there
was a photon in the final state whose energy was less than 1 GeV; let’s call
this prediction σex (e+ e− → μ+ μ− + γ). This prediction indeed scales like a
power of α, but also as a function f of the ratio of Ecm to 1 GeV:



(6.64)

As we will see in Chapter 9, this function f is typically a logarithm, and so if
the center-of-mass energy is large enough that it is comparable to the inverse
of the fine structure constant,

(6.65)

then it is not true that the process with a photon in the final state is
suppressed by a small number with respect to the process with no photon. To
make predictions for exclusive processes, then, we need to account for an
arbitrary number of photons in the final state. In many cases, this is easier
than it sounds and the sum over all possible numbers of emitted photons can
be done explicitly.



6.2 e+ e− → Hadrons

6.2.1 Inclusive Hadronic Cross Sections
This discussion of inclusive cross sections leads into the observation and
prediction of e+ e− → hadrons events. In addition to processes like e+ e− → μ
+ μ−, also observed in the collisions of electrons and positrons is the final-
state production of hadrons in the process e+ e− → hadrons. Hadrons, such as
pions, protons, or neutrons, are complex composite particles. We would like
to predict the inclusive cross section for e+ e− → hadrons.

How do we do this? One way is to calculate the individual rates for all
possible collections of hadrons in the final state. We can calculate the cross
sections for the individual processes e+ e− → π0 π0, e+ e− → π+ π−, e+ e− →
pp, and every other possible hadronic final state, and then sum them all
together. At the very least, this is enormously computationally challenging as
we have to consider a huge number of processes. As it turns out, despite
significant effort by thousands of theorists, no one has made progress on this
“direct” calculation of e+ e− → hadrons. So, what do we do? Do we give up?

Of course the answer is no, we just have to think about the problem
differently. Let’s go back to our understanding of inclusive cross sections and
the constituents of hadrons. As we discussed with the quark model in Section
3.3.3, hadrons organize themselves into representations of isospin or SU(3)
flavor. All observed representations have a dimension larger than 2 or 3,
which would be the dimensionality of the fundamental representation of
isospin and SU(3) flavor, respectively. So, this suggests that all
representations of hadrons are formed by taking products of smaller
representations and the existence of fundamental constituents, called quarks.

We don’t observe quarks directly (nor have we ever) for reasons we will
discuss in Chapter 8. Nevertheless, with the discovery of quarks as the
fundamental constituents of hadrons, we can make progress on understanding
and calculating the cross section for e+ e− → hadrons. The thing we want to
predict is an inclusive cross section; we aren’t demanding anything specific
about the observed hadrons and there could be anything else produced in the



collision. So, with that understanding, considering processes like e+ e− → π+

π− + X in which specific hadrons are produced is wrong; while this includes
some of the possible final states, it misses most of them, like e+ e− → π0 π0,
for example.

However, while we may not understand the magic responsible for it, if we
consider processes in which quarks are produced, this can include the
production of any collection of hadrons in the final state consistent with
energy and momentum conservation. For example, the inclusive process e+ e−

→ uū + X, where u is an up quark, describes both processes where neutral
and charged hadrons are produced:

(6.66)

Again, we have to be inclusive: e+ e− → uū + X can produce π0 π0 and π+ π−

final states, and many others.
With this insight, we can predict to good approximation the e+ e− →

hadrons cross section from the inclusive cross section e+ e− → qq, where we
sum over all possible final-state quarks q and anti-quarks q allowed by
energy and momentum conservation. Quarks are spin-1/2 particles, just like
muons, so we are able to reuse our results from that study to determine

(6.67)

How do we do this?

6.2.2 Properties of the Inclusive Cross Section: Color
By the quark model, quarks must be electrically charged to account for
electrical charges of the hadrons. The quark model predicts that the proton
consists of two up quarks and a down quark (p = uud) and a neutron is two
down quarks and an up (n = ddu). The electric charge of the proton or the
neutron is just the sum of the electric charges of the quarks that compose it.
Then,

(6.68)



in units of the fundamental charge e. Solving these two equations, we find Qu
= 2/3 and Qd = −1/3. So, the quark model predicts that quarks have electric
charges that are fractions of the fundamental charge. This is fascinating in its
own right, but let’s keep going.

Quarks, like electrons and muons, are electrically charged and so they
couple to electromagnetism in proportion to their charge. Because of this
property, quarks can be produced in the exact same way as muons in the
process e+ e− → μ+ μ−. At this point, the only differences in the calculation of
the cross sections σ(e+ e− → μ+ μ−) and σ(e+ e− → hadrons) is that we need to
(1) include the charge of the quarks in the calculation and (2) sum over all
quarks that could be produced. Importantly, this sum is done at the level of
the squared matrix element, and not of individual Feynman diagrams. While
we have never directly observed individual quarks, in principle we could, and
could therefore distinguish different types of quarks by their masses, charges,
and other quantum numbers. In the following example, let’s include these
differences to predict σ(e+ e− → hadrons).

Example 6.2 Using the result for the cross section σ(e+ e− → μ+ μ−) from Eq.
6.55, what is the inclusive cross section for hadron production, σ(e+ e− →
hadrons)?

Solution
Our insight into inclusive cross sections tells us that the total cross section for
e+ e− → hadrons, to good approximation, is just

(6.69)

where Qq is the electric charge of quark q in units of the fundamental charge
e. In the last equation, we’ve used the expression for the e+ e− → μ+ μ− cross
section, Eq. 6.55, as the cross section to produce each individual type of
quark–anti-quark pair in the final state. This prediction can be compared to
experiment. Actually, a better measurement is the ratio of the cross sections,
called R,

(6.70)



which just reduces to the sum over quark charges. To predict the value of R,
we just need to know how many quarks there are and what their electric
charges are.

By 1974, four quarks were known: up, down, strange, and charm, with
charges

(6.71)

Depending on the center-of-mass energies, the types and numbers of
quarks that can contribute to R changes. A quark can only be produced in the
final state if the center-of-mass energy is greater than twice its mass. At
center-of-mass energies below about 4 GeV, only the up, down, and strange
quarks are light enough to contribute to R. Thus, we (naïvely) find that R for
energies below about 4 GeV is

(6.72)

Above about 4 GeV, the charm quark also contributes and so the value of R
will change appropriately:

(6.73)

The observed values in these two regimes are actually close to R(Ecm < 4
GeV) = 2 and  respectively, three times larger than our
predictions. This is demonstrated in data in the top two panels of Fig. 6.2.



Fig. 6.2 Plot of the ratio R of the cross section for e+ e− → hadrons to the cross section for e+ e− → μ+ μ
− in various center-of-mass collision energy windows. The prediction of R in the quark model is shown
in the dashed curve, and its value changes depending on the number of quarks with masses less than the
collision energy. In the top plot, the up, down, and strange quarks contribute; in the middle plot, the
charm quark also contributes about about 4 GeV; and in the bottom plot, the bottom quark also
contributes above about 10 GeV. This plot was compiled in M. Tanabashi et al. [Particle Data Group],
“Review of particle physics,” Phys. Rev. D 98, 030001 (2018).

Does this mean that our prediction is wrong? Not really, it’s just
incomplete. Along with other evidence we will discuss in the following
chapters, this cross section ratio discrepancy is evidence that there are



actually three copies of each type of quark. These three copies are
distinguished by a quantity called color, typically called red, green, and blue,
though has nothing to do with visible light whatsoever. Therefore, there are
actually three times as many quark final states available as we naïvely
expected. Including this factor of 3, the cross section ratio R becomes

(6.74)

for center-of-mass collision energies lower and higher than about twice the
charm quark mass (mc ≃ 1.3 GeV). This simple picture and calculation then
agrees well with experiment, as shown in the plots of Fig. 6.2. Above a
center-of-mass energy of about Ecm ≃ 10.5 GeV, R is again seen to increase,
corresponding to the production of bottom quarks in the final state. Assigning
the bottom quark an electric charge of

(6.75)

the value of R above 10.5 GeV would be

(6.76)

This is in reasonable agreement with data presented in the bottom panel of
Fig. 6.2. Improved agreement with data can be accomplished using the
fundamental theory of quarks, color, and the strong force, called quantum
chromodynamics (the solid curves on the plots of Fig. 6.2).

6.2.3 Properties of the Inclusive Cross Section: Spin
This R measurement is evidence for both the fractional charges in the quark
model and for the existence of color. We’ll find a lot more evidence for both
in later chapters, but for now, let’s go back to another property of quarks that
we have assumed up to now. To be able to recycle the cross section from e+ e
− → μ+ μ− for hadron production, we needed to assume that quarks are spin-
1/2 particles, just like muons. However, how do we know? Let’s go back to
the differential cross section for e+ e− → μ+ μ−:



(6.77)

If we translated this to quarks, the overall coefficient would be affected by
quark charges and color, but the shape, the 1 + cos2 θ, would remain. This
shape, which is peaked for θ = 0 or π, is indicative of the final-state particles
being fermions with spin-1/2.

If we can measure the angular distribution of the final-state quarks, then
we would have evidence of their spin. For reasons we will study in detail in
Chapter 9, hadrons produced in e+ e− → hadrons events are not just
uniformly distributed throughout the experiment. At high center-of-mass
collision energies, hadrons form collimated streams, called jets. These jets
are a manifestation of the underlying quarks. That is, in an e+ e− → hadrons
event, we will observe something like that illustrated in Fig. 6.3. The two jets
are composed of numerous hadrons (pions, protons, etc.) which are
schematically denoted by the lines emanating from the collision point. The
two jets in this illustration can be thought of as a proxy for their initiating
quarks: the momentum of the jets will be very close to the momentum of the
initiating quarks. Our modern interpretation of jets initiated by inclusive
high-energy quark production was first experimentally verified in 1975.2 An
event display of such a dijet event from the DELPHI experiment at the
Large Electron–Positron Collider (LEP) is presented in Fig. 6.4.

Fig. 6.3 Schematic illustration of two jets of collimated hadrons produced from electron–positron
collisions. The scattering angle of the final state is illustrated as the angle of one of the jets from the
electron–positron momentum axis.



Fig. 6.4 A dijet event display from the DELPHI experiment. Electrons and positrons are collided at Ecm
= 91 GeV and two back-to-back jets are observed in the detector. The electrons and positrons come in
from the left and right, respectively, and the jets are the collimated tracks and calorimeter deposits
pointing nearly up and down from the collision point in the center. The components of the DELPHI
detector are outlined for illustration. Credit: DELPHI experiment © CERN.

The dominant process for hadron production consists of two jets with equal
and opposite momentum. This observation suggests the cross section
relationships:

(6.78)

We can measure the scattering angle θ illustrated in Fig. 6.3 that the jets
make with the electron beam axis, and compare to the 1 + cos2 θ expectation
from spin-1/2 quarks. A plot of data in which the scattering angle in e+ e− →
dijets events was measured is shown in Fig. 6.5. These data exhibit the
characteristic 1 + cos2 θ dependence, providing concrete evidence for the
spin-1/2 nature of quarks. Therefore, just from thinking about the



consequences of the quark model for e+ e− → hadrons, we have evidence for
both quark color and spin. In Exercise 6.5, we predict the differential cross
section for spin-0 quarks and see whether it can be consistent with data.
Spoiler: the spin-0 hypothesis will not be consistent with data!

Fig. 6.5 Distribution of the thrust angle cos θ in e+ e− → hadrons collisions at a center-of-mass energy
Ecm = 29 GeV. The thrust angle is a way to define the scattering angle for the collimated collection of
particles in a jet. Reprinted figure with permission from W. T. Ford et al., Phys. Rev. D 40, 1385
(1989). Copyright 1989 by the American Physical Society.



Exercises
6.1 Lorentz Transformations of Spinors. With explicit spinor solutions to

the Dirac equation we can then determine how they transform under
Lorentz transformations. For a massless momentum four-vector p
where

(6.79)

with energy E, polar angle θ, and azimuthal angle ϕ, recall that the
right- and left-handed spinors are

(6.80)

Determine the 2 × 2 matrix M that implements each of the following
Lorentz transformations:

(a) an azimuthal rotation by an angle χ
(b) a polar rotation by an angle ω
(c) a Lorentz boost along the ẑ-axis by a velocity β.

The matrix M is defined as

(6.81)

where u is the original spinor and u′ is the Lorentz-transformed
spinor.

6.2 Helicity Spinors. Spinors of definite helicity have more interesting
properties as spin- 1/2 representations of the Lorentz group. In this
exercise, we will demonstrate some of them and relate them to
properties of the Pauli spin matrices. The expressions for the left- and
right-handed spinors are rewritten above in Eq. 6.80.

(a) The inner product of the spinors is normalized:  and



orthogonal:  Evaluate the outer product of spinors 
and  Your result will be a matrix. How does the matrix 
compare to  What matrix is  in terms of the Pauli σ
matrices?

(b) Now, take the trace of the outer product matrix. In terms of the
original spinors, what did you just compute? Combining this
result with part (a) is the justification for the normalization of the
spinors.

(c) The helicity operator ĥ can be expressed as the matrix

(6.82)

where p̂  is the unit vector in the direction of the three-
momentum  and is the vector of the three Pauli spin matrices ⃗σ
= (σ1, σ2, σ3). Evaluate the helicity operator ĥ for the momentum
represented in spherical coordinates. What are the eigenvalues of
ĥ acting on the spinors uR and uL ?

(d) In Eq. 6.42, we evaluated the spinor product

(6.83)

in the center-of-mass frame for momenta p1, p2, k1, and k2,
relevant for e+ e− → μ+ μ− scattering. In this same frame,
evaluate the spinor product

(6.84)

How does this compare to the other spinor product above? This
relationship is an example of a Fierz identity.

6.3 Spin Analysis of e+ e− → μ+ μ− Scattering. In calculating the matrix
element for e+ e− → μ+ μ−, we found zeros at certain regions of phase
space. For example, the matrix element

(6.85)



vanishes if cos θ = −1. Explain this zero probability for scattering by
angular momentum conservation.

6.4 Spin-0 Photon. We are quite confident that the photon has spin 1,
even without testing it in electron–positron collisions. Nevertheless,
let’s assume the photon were a spin-0 particle. Without doing a
calculation, can you determine the scattering angle dependence in the
matrix element for the process e+ e− → μ+ μ− ? Is this consistent with
data?

Hint: Of course the matrix element is Lorentz invariant. If the
photon were spin 0, are there subparts of the matrix element that are
additionally Lorentz invariant alone?

6.5 e+ e− → Scalars. The angular distribution of the jets present in e+ e−

→ hadrons collisions is evidence for the spin-1/2 nature of quarks.
But is it possible for quarks to have a different spin? In this exercise,
we will calculate the Feynman diagram for the process e+ e− → ϕϕ∗,
where ϕ is an electrically charged massless scalar, a spin-0 particle.
As a spin-0 particle, it has no helicity, and its external spin
wavefunction is just 1. The Feynman diagram for this process
mediated by a photon is

where the external scalars are denoted by the dashed lines.

(a) What helicity configurations of the initial-state e+ e− pair are
allowed by angular momentum conservation?

(b) To evaluate the Feynman diagram, we need to know how the
scalar couples to the photon. The unique result consistent with
electric charge conservation is

(6.86)



where both momenta k1 and k2 leave the vertex. Working in the
center-of-mass frame where the initial electron and positron
collide head-on with equal energy, compute the Feynman
diagrams for e+ e− → ϕϕ∗ with all possible electron and positron
helicities. Assume that the electric charge of the scalar is e. You
should find, for example,

(6.87)

(c) Now, square the matrix elements corresponding to different
electron and positron helicities, and sum them. What is the cross
section differential in the scattering angle θ? Make sure to
average over initial spins of the electron and positron. What is
the cross section when θ → 0 or π?

(d) Now, integrate over the scattering angle and determine the total
cross section σ(e+ e− → ϕϕ∗). How does the value of the total
cross section compare to that of the process e+ e− → μ+ μ− ?

6.6 Decays of the Z Boson. The Z boson is an unstable particle, and as
such, decays to less massive particles. The Z boson is electrically
neutral and couples to any particle that carries a charge under the
weak force. Z boson decays are of the form

(6.88)

where f is a fermion of the Standard Model, and f is its anti-particle.
The Z boson couples to the each of the fermions of the Standard
Model with (approximately) equal strength. Here, we will understand
the relative rates of Z boson decay to different fermions of the
Standard Model. We’ll discuss many more properties of the Z boson
starting in Chapter 11.

(a) The Z boson decays to both electrons and up quarks: Z → e+ e−



and Z → uū. About how much more often does the Z boson
decay to up quarks then to electrons?

(b) Using the PDG, what quarks can the Z boson decay to? What
charged leptons can the Z decay to?

(c) Combining parts (a) and (b), estimate the ratio of the rate at
which Z bosons decay to hadrons to the rate at which they decay
to charged leptons.

(d) Using the PDG, determine the measured ratio of the rate of Z
decays to hadrons to the rate of Z decays to charged leptons.
How does this compare to your estimate in part (c)?

6.7 Inclusive versus Exclusive Cross Sections. In this chapter, we
discussed the distinction between inclusive and exclusive cross
sections, especially in the context of interpreting the process e+ e− →
hadrons. In this exercise, we will see how different these cross
sections are as the restrictions imposed in the exclusive cross section
are made extreme.

The ALEPH experiment at the Large Electron–Positron Collider measured
the inclusive e+ e− → hadrons cross section at a center-of-mass collision
energy of Ecm = 206 GeV. From this inclusive cross section, ALEPH then
imposed restrictions on the hadronic final state to extract exclusive cross
sections for the processes e+ e− → n jets, where n = 1, 2, 3, 4, 5, and 6 or
more jets. Figure 6.6 plots the results of this study, where each exclusive
process is expressed as a fraction of the inclusive process.



Fig. 6.6 Plot of the n-jet fraction in e+ e− → hadrons events from the ALEPH experiment at the Large
Electron–Positron Collider as a function of the jet resolution variable ycut. Reprinted by permission
from Springer Nature: Springer Nature Eur. Phys. J. C “Studies of QCD at e+ e− centre-of-mass
energies between 91 GeV and 209 GeV,” A. Heister et al. [ALEPH Collaboration] (2004).

To separate the inclusive cross section into individual exclusive cross
sections for n-jet production, ALEPH measured the momentum of the jets
and imposed restrictions on relations between pairs of jets. ALEPH
demanded that a relationship between the energies Ei and Ej of two jets i and j
and their relative angle θij be greater than a fraction of the total center-of-
mass collision energy:

(6.89)



Only if this restriction was satisfied did ALEPH count the jets,
otherwise the lower-energy jet was ignored. The parameter ycut varies,
and ALEPH considered the range ycut ∈ [10−5, 1]. For a fixed number
of jets in the final state, smaller values of ycut are stronger restrictions
on those jets.

(a) What is the smallest energy scale that is imposed on the hadronic
final state when ycut = 10−5 ? Express your answer in GeV. How
does this compare to the mass of the proton, for example?

(b) At large values of ycut, Fig. 6.6 demonstrates that most of the
inclusive cross section for e+ e− → hadrons is contained in the
exclusive process e+ e− → two jets. Below approximately what
value of ycut is this dijet cross section starting to be a poor
approximation to the total cross section of e+ e− → hadrons?

(c) As we will discuss in Chapter 7, the cross section for additional
jet production is controlled by the coupling of QCD, αs, which is
called the strong coupling. Because we impose a new energy
scale on the final state according to the value of ycut, we expect
that the exclusive cross section for three-jet production is related
to two-jet production as

(6.90)

for some function of ycut, f(ycut). This parallels our discussion in
Section 6.1.5. In Chapter 9, we will show that this function is

(6.91)

Using Fig. 6.6, what is the approximate value of αs? Note that
the logarithm in Eq. 6.91 is to base e (natural logarithm).

(d) As ycut → 0, what is the probability that there are only two jets in
the final state? In this same limit, how many jets will be
observed in the process e+ e− → hadrons, and how does this
compare to the total number of hadron particles detected by the



experiment?

6.8 Finite Decay Width Effects. In this chapter, we calculated the cross
section for e+ e− → μ+ μ− through an intermediate photon. We then
modified the predictions of this process to understand the process e+ e
− → hadrons where individual quarks were still produced through
electromagnetism. At very high center-of-mass collision energies,
however, the Z boson can also mediate these processes. In this
exercise, we will work to incorporate the effects of the Z boson into
these predictions as approximately a massive photon. This
approximation will be justified in Chapter 11.

(a) The propagator for a massive, unstable particle like the Z boson
can be written as

(6.92)

q is the momentum flowing through the virtual Z boson, mZ is
the mass of the Z boson, and ΓZ is the width or decay rate of the
Z boson. In the process e+ e− → hadrons,  the squared
center-of-mass collision energy. In the evaluation of a cross
section, this propagator appears as its absolute value squared.
Taking this absolute squared propagator as the relative
probability distribution of Z boson production, what is its full
width in Ecm at half of the maximum value? Does this justify the
term “width”?

(b) Including a factor of 3 for quark color, the total cross section for
e+ e− → hadrons through a photon is

(6.93)

The ∗ superscript denotes that the photon is off-shell and the
factor of 11/3 is the total squared sum of quark charges up
through the bottom quark. With the Z boson propagator from part



(a), modify this cross section to predict the cross section with an
intermediate Z boson, σ(e+ e− → Z∗ → hadrons). Assume that the
Z boson couples to electrons and quarks in the same way as a
photon does.

(c) We’ll assume that the intermediate photon and Z boson do not
interfere quantum mechanically, so we can just sum their cross
sections. That is, calculate the total cross section for e+ e− →
hadrons as

You should find

(6.95)

(d) The top panel of Fig. 6.7 shows the cross section for e+ e− →
hadrons in mb as a function of the center-of-mass collision
energy  From this plot and the functional form of your
prediction from part (c), estimate the mass mZ of the Z boson and
its width ΓZ. You can use α = 1/137 and only consider the region
where  How do your extracted values of mZ and ΓZ
compare to the properties of the Z boson from the PDG?



Fig. 6.7 At the top is the cross section for e+ e− → hadrons from various experiments as a
function of the center-of-mass energy. The bottom plot is the ratio R of the cross section of e+

e− → hadrons to that of e+ e− → μ+ μ−. From M. Tanabashi et al. [Particle Data Group],
“Review of particle physics,” Phys. Rev. D 98, 030001 (2018).

6.9 Research Problem. In this chapter, we introduced exclusive cross
sections and we’ll predict one such cross section in Chapter 9. In
general, is there a principle for selecting what type of exclusive cross
sections can be predicted?



1 W. Gerlach and O. Stern, “Experimental test of the applicability of the quantum theory to the
magnetic field,” Z. Phys. 9, 349 (1922).

2 G. Hanson et al., “Evidence for jet structure in hadron production by e+ e− annihilation,” Phys.
Rev. Lett. 35, 1609 (1975).



7

Quarks and Gluons

The observation of jet production in e+ e− collisions and their angular
distribution is strongly suggestive of the existence of fundamental quarks.
However, it’s not quite a smoking gun. If quarks do exist as the fundamental
constituents of hadrons then we should be able to observe their point-like
structure. Just observing jets isn’t really probing the structure of quarks, and
there’s still quite a logical leap from measuring the angular distribution of jets
to concluding the spin of quarks. We need a direct probe of the constituents
of hadrons such as the proton, so let’s just collide electrons with protons! The
process in which electrons and protons are collided at high energies is called
deeply inelastic scattering or DIS, and we’ll find that DIS is the tool that we
need.

Digging a little deeper in the predictions of the quark model, we found that
it wasn’t sufficient to describe the rate of e+ e− → hadrons scattering; we
needed to multiply by a factor of 3 to have predictions match data. We called
this factor of 3 “color,” which so far is totally ad hoc. If, in addition to
electric charge, quarks do indeed carry a color charge, then there should be a
corresponding force between quarks whose strength is proportional to this
color charge. The possibility of such a force is extremely attractive for
phenomenology: it could potentially describe why quarks form hadron bound
states. As a force, though, it would need a mediating particle just like the
photon of electromagnetism. Where is this particle? By revisiting e+ e− →
hadrons, we’ll identify direct evidence for this force carrier that we now call
the gluon.

In this chapter, we identify the players of this new force and their
properties. We call this force the “strong force,” and this will set the stage for
construction of a complete theory of the strong force called quantum
chromodynamics or QCD in Chapter 8. Along the way, we’ll find many
surprises and get glimpses of a theory that is very different than familiar



electromagnetism.



7.1 Crossing Symmetry
To frame the discussion of this chapter, let’s start by discussing the useful
kinematic variables to express the experiments we will study. Most of the
scattering processes that we consider consist of two initial-state particles that
interact and produce two final-state particles, like e+ e− → μ+ μ− studied in
the previous chapter. Such processes are called 2 → 2 (read: “two-to-two”),
and we can completely characterize what happens in such a scattering. The
general 2 → 2 scattering process can be visualized as:

with initial momenta p1, p2 and final momenta p3, p4. Momentum
conservation imposes

(7.1)

The description of the scattering process must be Lorentz invariant. As such,
it can only depend on particle masses (m1, m2, m3, m4) and Lorentz-invariant
four-vector dot products. Naïvely, there are six dot products that can be
formed, but momentum conservation relates pairs of them:

(7.2)

The names s, t, and u for these Lorentz-invariant momentum combinations
are called Mandelstam variables, named after Stanley Mandelstam.1 Among
other work, Mandelstam is known for proving that the exotic theory called N

= 4 supersymmetric Yang– Mills exhibits a larger spacetime symmetry than



just Lorentz transformations.2 This theory is actually invariant under
conformal transformations: all possible transformations that maintain relative
angles. As such, its interactions are extremely highly constrained, more so
than the interactions of the Standard Model.

The utility of the Mandelstam variables is that they express different
momentum exchanges between the initial and final state. For example, for the
process e+ e− → qq, the Feynman diagram for this process is

Then, the squared momentum of the intermediate photon is s = (p1 + p2)2. A
scattering process like this is therefore called an s-channel process. In the
center-of-mass frame, 

The t-channel process is just a different time ordering of the same
fundamental scattering process. If time instead flows upward, the Feynman
diagram remains the same but corresponds to the process e− q → e− q:

Therefore, the squared momentum of the photon is t = (p1 −p4)2. Note that
we’ve relabeled the particle momenta so that p1 and p2 are always the initial
momenta and p3 and p4 are always the final momenta. Specializing to
massless particles and working in the center-of-mass frame, we can express
the external particle momenta in spherical coordinates as

(7.3)



Then, the value of t is just

(7.4)

where θ is the scattering angle.
The u-channel would be yet a further different time ordering, but this

happens to not exist for electron–quark scattering. The reason for this is that
electromagnetism does not allow for electrons to turn into quarks directly.
The diagram that would correspond to the u-channel process,

is forbidden by the nature of electromagnetic interactions. The u-channel is
allowed when identical particles are scattered, as in the process e− e− → e− e
−, which is called Møller scattering.3 For Møller scattering, the u-channel
corresponds to the following diagram:

The squared momentum of the photon in this diagram is:

(7.5)

in the center-of-mass frame.



For all massless particle scattering, note that we have the relationship

(7.6)

which is a Lorentz-invariant constraint. That is, for 2 → 2 processes, there are
only two quantities that completely characterize the scattering: the center-of-
mass collision energy Ecm and the scattering angle θ.

7.1.1 Electron–Quark Scattering
Using the Mandelstam variables, we can rewrite the expression for the cross
section of the process e+ e− → qq that we derived in the previous chapter. For
one type q of quark with electric charge Qq, the cross section differential in
the scattering angle is

(7.7)

This follows from the differential cross section for e+ e− → μ+ μ− scattering,
Eq. 6.54, where we include the quark electric charge and multiply by a factor
of 3 to account for color. Using the relationships  and 

 we can express the scattering angle in terms of the
Mandelstam variables. We have

(7.8)

where we used s + t + u = 0 to eliminate u. The angular dependence factor 1
+ cos2 θ is then

(7.9)

The last piece that we need to express the differential cross section in terms
of the Mandelstam variables is the Jacobian factor. From Eq. 7.8, we have

(7.10)



which enables us to rewrite the cross section differential in cos θ to
differential in t. Combining these results, we find

(7.11)

or that

(7.12)

These relationships and this formalism are exceptionally powerful. We can
simply write down the cross section for the process e− q → e− q accounting
for the change in direction of time. In terms of Feynman diagrams, we start
from the process e+ e− → qq described by

(7.13)

and transform it to the process e− q → e− q:

(7.14)

Rotating the direction of time by 90◦ in these diagrams is accounted for by
exchanging the external momenta as

(7.15)



In terms of the Mandelstam variables, this change corresponds to

(7.16)

By changing the direction of time, we do not change the value of the
Feynman diagram in this process. This is not necessarily true for a general 2
→ 2 process, which we will discuss when studying the weak force in Chapter
10. To determine the cross section for the process e− q → e− q, all we need to
do is make the appropriate replacements for s, t, and u established above in
the process e+ e− → qq.

Making these replacements, we find

(7.17)

Note that some things changed while others did not. The factor of 3
accounting for color was removed because there is a quark in the initial state.
The Feynman diagram of Eq. 7.14 is only non-zero if the color of the initial-
state quark is identical to the color of the final-state quark; the photon cannot
change quark colors. The overall factor of 1/s2 did not change in transforming
from the process e+ e− → qq to e− q → e− q. This factor came from the
change-of-variables Jacobian from Eq. 7.10 and the factor in Fermi’s Golden
Rule that accounts for the de Broglie wavelength of the initial colliding
particles. In the rest of the expression, we exchanged s, t, and u as specified
in Eq. 7.16.

That we can so easily determine the cross section for processes with the
same underlying Feynman diagrams by exchanging s, t, and u is called
crossing symmetry. We have “crossed” the initial-state positron to a final-
state electron and a final-state anti-quark to an initial-state quark. We say that
the process e− q → e− q is the crossing of e+ e− → qq (and vice-versa).
Crossing symmetry was what we identified in Section 6.1.2 as relating matrix
elements by complex conjugation. Another way to say this is, for example,
that the complex conjugate of an initial-state positron is a final-state electron.
Complex conjugation relates particles to their anti-particles.



With a prediction for the cross section of e− q → e− q, we have a new way
to test the quark model! If we are able to collide electrons on quarks, then we
can test the hypothesis that quarks are point particles; that is, they have no
spatial extent. If quarks are point particles, then they should look the same,
no matter what energy or wavelength we probe them with. So, is this true and
how do we test it?



7.2 Deeply Inelastic Scattering
We need to figure out how to get a sample of quarks with which we can
scatter electrons. The quark model itself can help us out here. While we can’t
produce quarks in isolation with which to collide electrons, we can collide
electrons with protons. At sufficiently high energies, the electrons will have a
de Broglie wavelength that is shorter than the Compton wavelength of the
proton. At these energies, the electron resolves the constituent quarks,
according to the quark model. Both electrons and quarks are electrically
charged, and so this scattering process is mediated by photons.

In a schematic Feynman-like diagram, the process we are considering is:

An electron is scattered off of a proton p and the final configuration consists
of an electron and X, which is some collection of hadrons. We want to be
completely inclusive on the final state (for reasons that will be clear shortly)
and so the process we consider is e− p → e− +X, where X is anything. If the
energy of the electron changes in this interaction, then the collision is
inelastic, and the proton explodes into other particles. This inelastic process is
called deeply inelastic scattering or DIS.4

In DIS, the photon is not interacting with the proton, but rather with its
constituents, the quarks. A better diagram for DIS might be:



In this diagram, q represents a constituent quark of the proton. Let’s break
this diagram apart and understand its pieces to make predictions in this
model. By the way, the model in which quarks are the “parts” of a proton and
therefore govern high-energy interactions is called the parton model,
introduced by Richard Feynman.5

Let’s go to the center-of-mass frame for simplicity, though the analysis
will be completely Lorentz invariant. Let the momentum of the initial and
final electrons be ke and  respectively, and the momentum of the initial
proton be P. Then, the momentum flowing through the photon is6

(7.18)

Note that q is space-like:

(7.19)

for  Often, we will denote −q2 ≡ Q2, which represents the
momentum transferred from the electron to the proton. In the parton model
picture, the electron actually interacts with an individual quark. What is the
momentum of the quark? For a high-energy proton, the quark will just carry a
fraction x ∈ [0, 1] of the total proton momentum. This high-energy limit
corresponds to when the proton energy Ep is much larger than the proton
mass mp: mp ≪ Ep. In this limit, we can also ignore the mass of the proton.
Let’s call the momentum of the initial and final quarks kq and  respectively.
Then,

(7.20)

Then, the picture we have of DIS is:



Now, with these kinematics, we need to calculate some things. First, there
is the hard electron–quark scattering. We know the differential cross section
for this. Exploiting crossing symmetry to relate the process e+ e− → qq to e−

q → e− q, the differential cross section is

(7.21)

Here, we introduce ŝ, t̂, and û, which are the Mandelstam variables for the
interacting partons. Note that

(7.22)

where s is the Mandelstam variable for e− p scattering, approximating the
proton as massless. Similarly,

(7.23)

To define û, we use the linear relationship between ŝ, t̂, and û:

(7.24)

Substituting in these expressions, we can write the differential cross section
as

(7.25)

Though it seems to depend on the momenta of quarks from the proton, the
ratio û/ŝ is actually observable. To measure this ratio, we only need to know



the electron and proton momenta. To see this, note that

(7.26)

Then, the combination that appears in the differential cross section,

(7.27)

is also measurable. This is an extremely important point: though DIS
involves interactions between electron and constituent quarks in the proton,
all we need to do to completely characterize the scattering is to set the center-
of-mass collision energy  and measure the scattered electron’s
momentum, 

Okay, we’re getting close. The differential cross section of Eq. 7.25 isn’t
the whole story; this is just the subprocess e− q → e− q scattering in e− p
collisions. We need to get the quark out of the proton in the first place. In the
parton model, the fraction x of the proton’s momentum that the quark carries
has a probability distribution fq (x), which is called a parton distribution
function, or pdf. The probability Pq of extracting a quark parton from a
proton with momentum fraction in the range [x, x + dx] is

(7.28)

As written, this is independent of the exchanged momentum Q2, which is the
assumption we will make now. Q2 -independence means that regardless of
the energy or wavelength at which they are probed, quarks look the same and
have the same pdf. We will study the physical consequences of this
assumption and its generalization for the properties of quarks in the proton in
the next section.

With these assumptions, the cross section differential in x and Q2 for a
quark q is then

(7.29)



We can introduce the variable y for which

(7.30)

That is, Q2 = xys. Changing variables from Q2 to y, the differential cross
section becomes

(7.31)

The quark or parton model predicts multiple quarks in the proton, so we need
to sum over all of them to get the complete cross section:

(7.32)

Here, F2 (x) is called a form factor, which in the parton model is
independent of Q2.

The final thing to note is that the momentum fraction x of the quark is
actually observable. While DIS is inelastic scattering because the proton
explodes apart, the beautiful thing about the parton model is that the e− q → e
− q subprocess is actually elastic scattering. Therefore, the final-state quark is
on-shell, which enables us to solve for x:

(7.33)

That is, the momentum fraction x is

(7.34)

So, everything in the differential cross section of Eq. 7.32 is observable!
Again, the parton model assumes that the form factor F2 (x) is independent

of Q2, which can be directly tested. In the late 1960s and early 1970s,
experiments at Stanford Linear Accelerator Center (SLAC) and elsewhere
demonstrated to good approximation that the form factor was independent of



Q2.7 This feature of the parton model is called Bjorken scaling, after James
“BJ” Bjorken.8 Bjorken scaling is evidence for point-like quarks: if quarks
had an intrinsic size then there would be an energy scale or wavelength at
which this size could be resolved. This would then produce strong
dependence of the form factor F2 (x) on Q2.

Figure 7.1 displays data that demonstrate Bjorken scaling. Here, the form
factor F2 (x) is plotted as a function of the momentum fraction x in data from
deeply inelastic scattering of muons off of protons in the Bologna–CERN–
Dubna–Munich–Saclay (BCDMS) experiment which was located at CERN.
In an experiment, the form factor F2 (x) can be determined by measuring the
cross section for DIS and then dividing the measurement by the analytic form
of the cross section that is independent of x from Eq. 7.32. In this plot,
measurements of the form factor over a wide range of Q2 values agree
remarkably well, demonstrating to a large degree that the data lie on a
universal curve. However, at higher Q2, it is apparent that the data differ,
especially at larger values of x. Bjorken scaling is therefore only an
approximate description of the internal dynamics of the proton. As we will
discuss in Chapter 9, the deviations from Bjorken scaling are exactly
predicted in QCD.



Fig. 7.1 Measured form factor F2 (x) from μ− p deeply inelastic scattering data collected by the
BCDMS experiment. The data range over more than a decade in Q2, and yet to good approximation lie
on a universal curve. This is a prediction of Bjorken scaling. The data come from A. C. Benvenuti et al.
[BCDMS Collaboration], “A high statistics measurement of the proton structure functions F2 (x, Q2)
and R from deep inelastic muon scattering at high Q2,” Phys. Lett. B 223, 485 (1989).

7.2.1 Physical Interpretation of Bjorken Scaling
The prediction and subsequent experimental validation of Bjorken scaling
was a major triumph of the parton model. However, the weak observed
dependence of the form factor F2 (x) on momentum Q2 in Fig. 7.1, for
example, illustrates that there’s something else going on. The observed Q2

dependence is still suggestive of point-like quarks because we never observe
a value of Q2 beyond which the form factor dramatically changes. Here, we
consider the interpretation and consequences of Bjorken scaling and attempt
to understand how quarks can still be point particles while at the same time
violating Bjorken scaling.

First, let’s attempt to understand Bjorken scaling from a different
perspective. Bjorken scaling is the statement that the form factor F2 (x, Q2) is



independent of Q2:

(7.35)

Earlier, we interpreted this as a form factor or pdf that is independent of the
wavelength that probes the quark in the proton, and therefore the quark is a
point particle. How do we see this conclusion more precisely? As of now, we
have expressed the form factor in momentum space; that is, as a function of
the momentum q of a photon that probes the quark. This isn’t the most
natural space in which to determine if a particle is point-like; indeed, we
would rather express the form factor in position space. The momentum space
representation and position space representation are related by a Fourier
transformation. That is, to determine the form factor in position space, we
Fourier transform the expression of the form factor in momentum space.

The form factor in position space  is therefore

(7.36)

where q is the four-momentum of the intermediate photon in DIS and r is the
four-vector of position conjugate to q. As earlier, Q2 is the magnitude of the
square of the four-vector q: q2 = −Q2 < 0. Because q is space-like, we can
therefore boost to a frame in which q0 = 0. Then, we can express the
momentum q as

(7.37)

This is called the Breit frame. Then, in this Breit frame, the Fourier
transform that we have to do is

(7.38)

where  is now just the magnitude of the vector of spatial position.
Now, assuming Bjorken scaling, we can evaluate this Fourier transform

integral to determine the form factor in position space. With the Bjorken
scaling Q2 -independence F2 (x, Q2) = F2 (x), we have



(7.39)

To evaluate this integral, we can express it in spherical coordinates. It then
becomes

(7.40)

The integral over ϕ is just 2π and the integral over cos θ can be done by
relabeling cos θ = u. Doing these integrals, we find

(7.41)

This remaining integral can be done by noting that it is related to the
definition of the δ-function:

(7.42)

This follows from the definition of the δ-function,

(7.43)

The integral over  only ranges over positive  and cosine is an even
function, so we divide this integral by 2. Further, the radius  is strictly
positive, so we divide by 2 again. That is, the Bjorken-scaling form factor in
position space is

(7.44)

The derivative of the δ-function seems scary, but it’s actually very simple.
One can show that

(7.45)



Finally, we find that

(7.46)

This rather weird functional form for the radial dependence is actually the δ-
function expressed in spherical coordinates. Note that it is infinite when 

 and zero away from  and it integrates to 1:

(7.47)

The statement of Bjorken scaling is that the quark has no spatial extent: it
is located exclusively at  Another way to say this is that, because the
form factor is a δ-function of  if you are displaced at all from  then
you don’t even know that the quark is there. That is, Bjorken scaling
additionally assumes that the quark is a free particle at high energies and does
not interact with other particles. If the quark did interact with other particles,
then you could know about its presence even if you were displaced from 

 This observation that quarks apparently become approximately free,
non-interacting particles at high energies is incredibly intriguing. We will
provide an explanation for it in the next chapter. Here, we will attempt to
understand more generally the consequences for the form factor, only
assuming that quarks are point particles.

The assumption that the form factor for point-particle quarks is
independent of Q in momentum space or a δ-function in position space is
very restrictive and in no way general. Indeed, we are familiar with many
examples of point particles that exhibit extended spatial distributions. For
example, the electric potential of a point charge q is, in natural units,

(7.48)

This clearly has support away from  and yet the charge is located
exclusively at  The influence of the charge is allowed to extend away
from  because the charge interacts electromagnetically. That is, a point
charge is not a free particle, and interacts with the photon which is
responsible for the long-distance interactions of charges.



Note, however, that the electric potential cannot be an arbitrary function of
distance  Because the charge is still a point, if you zoom in and get closer
and closer to the charge, you must still see the  functional form of the
potential. This is essentially a consequence of Gauss’s law: because you can
never zoom in to actually see the size of the point charge, the electric
potential or electric field any finite distance away must always be of this 
form. Another way to say this is that the  potential is scale invariant: if
you scale distances as  the  potential remains unchanged:

(7.49)

for any λ > 0. So, for the form factor  to represent point-like quarks, it
doesn’t need to be a δ-function of position, just scale invariant. We’ll discuss
this in much more detail and precisely define what we mean by scale
transformations and scale invariance in Chapter 9. For now, however, this
analogy with the electrodynamics of point charges is sufficient for our
purposes here.

We can see how this scale transformation works with the form factor
which obeys Bjorken scaling. In position space, this form factor scales as

(7.50)

Indeed, this is scale invariant, as expected and so describes a point-particle
quark. A much more general expression of the spatial dependence of the form
factor that is scale invariant and so can describe a point particle quark is

(7.51)

for some ɛ > 0 where r0 is some characteristic length scale. This integrates to
1 on r ∈ [0, r0] in three-dimensional spherical coordinates. While this is not
the most general form factor possible, it illustrates concretely how Bjorken
scaling can be violated. We’ll see in a bit that this ɛ controls the strength of
the interactions of the quark; as ɛ → 0, the quark becomes a free particle.
Note that indeed this form factor is scale invariant to describe a point particle:



(7.52)

That is, the functional dependence of the form factor  with  is
independent of the magnification with which you look at it. What does this
form factor look like in momentum space?

Inverse Fourier transforming back to momentum space, the form factor is

(7.53)

In this expression, we identified  the magnitude of the momentum
vector. Here, Γ(ɛ) is Euler’s gamma function, defined as

(7.54)

This tells us that a scale-invariant spatial distribution corresponds to this ɛ
power-law distribution in momentum space. However, as written, this doesn’t
immediately manifest the Bjorken scaling limit. To see that, we can Taylor
expand this result in ɛ. This will justify the earlier claim that ɛ controls the
strength of interactions of the quarks. Taylor expanding in ɛ the result of the
inverse Fourier transformation from Eq. 7.53, we find

(7.55)

As ɛ → 0, the prefactor  ɛ → 0 limit: and so the Bjorken
scaling limit is the

(7.56)

Still consistent with quarks being point particles, Bjorken scaling can be
broken by logarithms of energy scale Q2, but there must be an infinite sum



over all powers of logarithms. For ɛ > 0, these logarithms are important, and
thus through their interactions, quarks have non-trivial spatial distributions.

We will see in Section 9.2 how this infinite sum over powers of logarithms
is done in QCD and what this ɛ actually corresponds to. In the next section,
we will address the issue of quark interactions directly. In this exercise of
studying Bjorken scaling and its violation, we showed that the ɛ → 0 limit
corresponds to Bjorken scaling in momentum space, Eq. 7.56. In position
space, that relationship would correspond to

(7.57)

What does this mean? And what consequence does this have for the radial
dependence when ɛ > 0? You’ll study that in Exercise 7.1 at the end of this
chapter. Before we continue, let’s apply crossing symmetry and parton
distributions to understand a fundamental process at hadron colliders, called
Drell–Yan.

Example 7.1 The Drell–Yan process is the inclusive scattering of protons
into leptons, like pp → e+ e− + X. It is named after Sidney Drell and Tung-
Mow Yan for their analysis of it in 1970.9 It is an extremely important
process in collisions at the LHC as it enables a very direct measurement of
the parton distributions. What is the differential cross section for Drell–Yan?

Solution
For the Drell–Yan process pp → e+ e−, the fundamental interaction is the
scattering of individual quarks and anti-quarks within the protons, qq → e+ e
−. Let’s draw a picture to see what we’re dealing with in Drell–Yan:



Here, in the initial state, there are two protons that are collided at high
energy. At sufficiently high energy (when the de Broglie wavelength of the
proton is much smaller than its Compton wavelength), the protons explode
apart and their constituents, the quarks or anti-quarks, interact directly. For
Drell–Yan, a quark from one proton and an anti-quark from the other proton
annihilate into a photon (or Z boson) which then splits into an electron and
positron.10

The underlying Feynman diagram for this process can be expressed in
terms of the Mandelstam variables for the partons, ŝ, t̂, and û. In this process,
we denote the momenta as

and so

(7.58)

(7.59)

(7.60)

The total cross section for e+ e− → qq with an intermediate photon in terms
of the center-of-mass energy  is

(7.61)

This can be crossed into the initial state by accounting for averaging, rather
than summing, over color:

(7.62)



Averaging over quark colors requires dividing by 9 because there are three
possible colors and three possible anti-colors for the initial quark and anti-
quark, respectively. Each color– anti-color pair is equally likely and there are
nine such pairs. We still need to pull the quarks out of the protons, so let’s do
that now.

Let’s say we pull the quark out of proton 1 with momentum fraction x1 of
proton 1’s momentum, while the anti-quark comes from proton 2 with
momentum fraction x2. If we call the momentum of proton 1 P1 (and P2 for
proton 2) then we define the center-of-mass proton collision energy as

(7.63)

so that

(7.64)

Here, we assume that we are working at sufficiently high energy so as to
ignore the proton mass. The probability distributions of the momentum
fractions x1 and x2 are defined by the parton distribution functions fq (x). The
cross section differential in both momentum fractions can therefore be written
as

(7.65)

or, written as the cross section for pp → e+ e−,

(7.66)

Here, q represents all possible quarks (or anti-quarks) that can be pulled out
of the proton.

This is interesting, but we can’t directly measure the momentum fractions
x1 and x2. So we want to re-express them in terms of things we can measure.
Two useful quantities with which to express the momentum fractions are the
invariant mass Q2 and the rapidity y of the final-state electron–positron pair.



The invariant mass is just ŝ:

(7.67)

The rapidity y is defined as

(7.68)

and can be determined by measuring the sum of the energies and z-
component of momenta of the e+ and e−. The total energy of the e+ e− pair is
just the sum of the energies of the quark and anti-quark:

(7.69)

Similarly, the pz of the e+ e− pair is equal to the pz of the quark and anti-quark
by momentum conservation:

(7.70)

Here, we have aligned the momenta of the protons along the ẑ-axis. Now,
from these expressions we can calculate the rapidity:

(7.71)

To write the cross section in terms of Q2 and y we can solve for x1 and x2 as

(7.72)

We also need the Jacobian factor J from the change of variables. To do this,
we calculate all derivatives and then take the determinant of the derivative
matrix:

(7.73)



Putting it all together, we predict that the differential cross section is

(7.74)

This is an incredible result! Rapidity dependence only enters in the parton
distributions, and therefore a measurement of the rapidity is very sensitive to
the parton distribution functions.

Figure 7.2 shows the rapidity distribution of the final-state e+ e− pair as
measured in the  experiment at the Tevatron, located at Fermilab outside of
Chicago. The Tevatron accelerated and collided protons on anti-protons and
measured the momenta of electron– positron pairs produced in the process pp
→ e+ e− + X, where X is anything else. Because protons and anti-protons are
anti-particles of one another, it is easiest to pull a quark out of the proton and
an anti-quark out of the anti-proton. This configuration then means that the
quark and anti-quark parton distributions fq and  that appear in Eq. 7.74 are
identical. Additionally,  looked for e+ e− pairs with invariant masses near
the Z boson mass, which enables an interpretation of this plot as the rapidity
of a Z boson produced in collision. From these data, you will be able to
extract the functional form of the parton distribution function fq (x) in
Exercise 7.7.



Fig. 7.2 Distribution of the absolute value of rapidity |y| of the Z boson in pp → e+ e− collisions.
Reprinted figure with permission from V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 76,
012003 (2007). Copyright 2007 by the American Physical Society.



7.3 Three-Jet Events
In our study thus far of attempting to understand the quarks and their
interactions, we have learned a huge amount:

Particles composed of quarks (hadrons) arrange themselves into
irreducible representations of flavor symmetry groups (e.g., isospin).
There seem to be three “colors” of each flavor of quark, which is
necessary to account for the measured value of R, the ratio of the cross
section for e+ e− → hadrons to that of e+ e− → μ+ μ−.
The parton model predicts that quarks are point particles: their
description is independent of the energy or wavelength that probes them.
At high energies, quarks become free particles and the form factor F2 (x)
exhibits Bjorken scaling.

While these observations are extremely informative, they also seem to raise
more questions:

What is the force that binds the quarks together in hadrons?
What exactly is color? What are the transformations that relate the three
colors?
Related to this, if color is conserved, what is the corresponding
symmetry, by Noether’s theorem?

In this section, we will posit part of a solution to these problems, and in the
next chapter we will introduce the theory that answers all of them: quantum
chromodynamics.

Box 7.1 Historical Profile: Mary Gaillard and Sau Lan Wu

Mary Gaillard is a professor at the University of California, Berkeley, and
became that school’s first tenured female physics professor in 1982. In the
1970s, she contributed extensively to the physics of heavy quarks, notably
predicting the mass of the charm quark prior to its discovery.11

Additionally, Gaillard worked on elucidating the phenomena of the Higgs



boson long before its discovery, as well as on grand unification, the idea
that at sufficiently high energies the fundamental forces unify into a single
force.12 In the late 1980s, she led the theoretical physics group at Lawrence
Berkeley Laboratory.

Sau Lan Wu was a member of the TASSO experiment at the PETRA
accelerator located at DESY, a German particle physics laboratory in
Hamburg. Wu was tasked with preparing the analysis for searching for the
gluon in these e+ e− → qqg events. She wrote a paper describing the
identification technique in 1979,13 and the gluon was discovered shortly
thereafter.14 In addition to gluons, Wu was also a member of the
collaborations that discovered the charm quark (in 1974) and the Higgs
boson (in 2012). Since 1977, she has been a professor at the University of
Wisconsin-Madison.

More information about the time of the discovery of the gluon can be
found in a review article by John Ellis: J. Ellis, “The discovery of the
gluon,” Int. J. Mod. Phys. A 29, no. 31, 1430072 (2014) [arXiv:1409.4232
[hep-ph]].

7.3.1 The Glue That Binds the Proton
Our goal in this section is quite restricted: we will just attempt to make
predictions for what the force carrier is that binds quarks together in hadrons.
We call this force carrier the gluon and we want a hypothesis for what
properties it has that we can test in experiment. If the gluon is responsible for
binding quarks, then we might postulate that it is something like the photon.
Electromagnetism, through its force carrier the photon, is responsible for
binding the proton and the electron into hydrogen. So, it is feasible that the
gluon is a spin-1 particle and massless, just like the photon. Let’s work with
this assumption and see what the predictions are.

The force that the gluon carries cannot be electromagnetism; that is, the
gluon is not the photon. Perhaps this is obvious, but it is a very important
point. Within the quark model, the argument for this is simple. There exist
bound states of quarks for which all quarks have the same electric charge; for
example, the Ω− baryon that is the bound state of three strange quarks. It is



not possible for three particles of the same electric charge to form a bound
state electromagnetically. Additionally, this means that the leptons, particles
like the electron or muon, do not feel the force carried by the gluon.

So, we now have a model for the strong force, the force that binds hadrons
together. It is carried by the gluon, which only talks directly to the quarks,
and not to the leptons. What prediction does this simple model make?

Let’s go back to our good friend e+ e− collisions, in which we first found
evidence for quarks. Can we “see” a gluon in e+ e− collisions? Because
gluons do not talk directly to electrons or positrons, we cannot just produce
gluons directly from e+ e− collisions. Within our assumptions, gluons can be
radiated from quarks, just as photons can be radiated from accelerating
electric charges. The simplest process in which a gluon g can be produced in
e+ e− collisions is then

(7.75)

We will calculate the Feynman diagrams and the cross section for this
process. The prediction of the gluon to be discovered in such a process was
first emphasized by John Ellis, Mary Gaillard, and Graham Ross in 1976.15

By the rules of Feynman diagrams, we need to sum over all possible
diagrams we can draw, consistent with the interactions that we define. For the
process e+ e− → qqg, there are two diagrams that we must sum together:

That is, the final-state gluon could have been emitted off of either the final-
state quark or anti-quark, and there is no measurement we can perform to
distinguish them. Here, we identify the photon and the gluon by their
symbols: the photon is a wavy line, while the gluon is a curly line (like a
spring).

What do we need to know to evaluate this diagram? We know how to



evaluate just the stuff involving the photon and external fermions from our
analysis in Chapter 6. However, there are two new things in these diagrams
that are unfamiliar from e+ e− → qq scattering: what the wavefunction of an
external gluon is, and what an intermediate fermion (quark) propagator is.
First the external gluon wavefunction.

7.3.2 External Gluon Wavefunction
Because we are assuming that the gluon is a spin-1 massless particle, its
wavefunction should satisfy the same equation of motion as the photon.
Then, the external wavefunction of a gluon will be represented by a
polarization four-vector ɛ, with the requirement that p · ɛ = 0, for gluon
momentum p. In Section 2.2.3, we constructed the polarization vectors for
right- and left-handed circular polarization, for momentum aligned along the
+ẑ-axis. It is easy enough to rotate these polarization vectors to correspond to
arbitrary momentum, but here we will present another, more useful,
representation of the gluon polarization vector. We won’t derive the results
that follow, but will provide consistency checks to verify that it has the
properties that a polarization vector should have.

The right-handed circularly polarized (right-handed helicity) gluon
polarization can be written as

(7.77)

for a gluon with momentum p. Here, the u and u† objects are the two-
component spinors with the corresponding helicity assignment. r is an
arbitrary massless momentum four-vector that represents the gauge freedom
of the gluon’s vector potential. The arbitrariness of r will be very important
for simplifying calculations. We’ll show this property shortly.

First, note that this expression for the polarization vector indeed satisfies
the equation of motion. We have

(7.78)



by the Dirac equation for the massless spinor uR (p): (p · σ)uR (p) = 0.
Additionally, the polarization vector is zero when dotted into the arbitrary
vector r:

(7.79)

by the Dirac equation for the massless spinor 
For a momentum p, we can explicitly evaluate this polarization vector. For

simplicity, let’s align p with the +ẑ-axis, so that

(7.80)

where E is the energy of the four-momentum p. For the massless momentum
r that points at an angle θ from the +ẑ-axis and an angle ϕ about the +ẑ-axis,
the spinor is

(7.81)

Here, Er is the energy of four-momentum r. Then, the spinor product in the
denominator of the polarization vector is

The spinor product in the numerator of the polarization vector is

Putting these together, we find that the polarization vector can be
expressed as

(7.84)



This looks different than the polarization vector that we quoted in Section
2.2.3. However, recall that the gauge freedom of the polarization vector ɛ
means that we can add an arbitrary contribution proportional to the gluon
momentum p without affecting any observable quantities. Then, this
expression for the polarization vector can be written as

(7.85)

where pμ = (E, 0, 0, E). Indeed, the contribution to the polarization vector that
depends on r is proportional to the gluon momentum p, and so cannot affect
any observable. The rightmost term of Eq. 7.85 can be set to 0 for θ = π; that
is, when the vector r is in the opposite direction of p.

The polarization vector for a left-handed circularly polarized (left-handed
helicity) gluon can correspondingly be expressed as

(7.86)

One can verify, just as we did with the right-handed helicity polarization, that
this expression satisfies all of the expected properties, though we won’t do
that here.

7.3.3 Fermion Propagator
Okay, now on to the intermediate quark propagator. The way that we can
think about the quark propagator (or any propagator, for that matter) is as the
Green’s function for the appropriate equation of motion. Let’s see what this
means in more detail. The quark propagator occurs in the part of the diagram
like:



Vertices, where particles interact, correspond to particles at the same
spacetime location, just like the nodes in a circuit diagram. So, we think of
the propagator as representing a quark produced, say, at the spatial point that
corresponds to the vertex with the photon. It is then annihilated at the vertex
with the gluon. That is, the propagator for the quark is the solution to the
Dirac equation with a source at a single point. Let’s call this solution G(x),
which depends on the position four-vector x. Then,

(7.87)

for a massless quark propagator. G(x) is indeed a Green’s function and the
multidimensional δ-function δ(4) (x) is defined as

(7.88)

where x0 is the temporal coordinate and x1, x2, x3 are the spatial coordinates.
To solve this, we can Fourier transform to the momentum space
representation. Fourier transforming Eq. 7.87 yields the equation

(7.89)

Here,  is the Fourier transform of G(x):

(7.90)

We call  the propagator for a massless quark.
This is still slightly weird because γ · p is a matrix, and we have to invert

it. To do this, we can use the anti-commutation relation of the γ-matrices:

(7.91)



In this expression, we have used the relationship

(7.92)

from Eq. 2.98. Thus, we can write the propagator for a massless quark as

(7.93)

For two-component spinors of definite helicity, the corresponding
propagators are

(7.94)

where R and L denote right- and left-handed helicity, respectively.

7.3.4 The Cross Section for e+ e− → q qg
Okay, we’re now ready to evaluate the Feynman diagrams and calculate the
cross section for the process e+ e− → qqg. This section will be quite dense on
mathematical manipulations. If you aren’t interested in the steps in getting
there, you can just skip to the result of all of this, Eq. 7.113.

As we did in the previous chapter, we will evaluate the Feynman diagrams
for different helicity configurations. We’ll do this explicitly for one helicity
configuration, and we’ll just quote the result summed over all helicities. Let’s
consider the process with helicity assignments

(7.95)

The Feynman diagrams for this process are



There are a lot of moving parts in these diagrams and expressions, so let’s
focus on the first diagram in a bit more detail. Let’s identify different parts of
the diagram and how they appear in the mathematical evaluation. For the first
diagram, we have

We have matched the boundary shape of a subpart of the diagram with the
term in the mathematical expression. The left side of this diagram should be
familiar: the part in the solid rectangular boundary is just the electromagnetic
interactions of electrons and positrons, while the photon propagator is the
part with the solid oval boundary. The right of this diagram is a bit less
familiar. The quark–anti-quark pair is produced in the region with the dotted
rectangular boundary; this is proportional to the electric charge of the quark,
Qq. The quark propagator is included in this region and the momentum
flowing through the propagator is −k2 − k3. The negative sign means that the
direction of momentum (outward) is opposite to the direction of fermion
arrow (inward). The gluon is emitted in the rectangular dashed region and the
strength of its coupling to quarks is denoted by g. Finally, the external quark
and anti-quark spinors are in the dotted and dashed oval regions, respectively.



The second diagram can be broken apart in a similar way. Conservation of
energy and momentum for this process is

(7.98)

The sum of Feynman diagrams in Eq. 7.96 can be simplified by
contracting the free Lorentz indices on the Pauli matrices. Contracting the
Lorentz indices rearranges the Feynman diagrams to be expressed in terms of
spinor inner products, which is an example of a Fierz identity. The matrix
element then becomes

(7.99)

Now, we need to evaluate the remaining σ-matrix structure and the gluon
polarization vector. Plugging in the explicit expression for the gluon
polarization vector in terms of spinors from Eq. 7.86 into the first term of Eq.
7.99, we have

(7.100)

By gauge invariance, we can choose any convenient reference four-vector r.
An especially nice choice is r = k2, the momentum of the final-state anti-
quark. With this choice, note that

(7.101)

and so this entire term vanishes!



We have to also evaluate the second term in the matrix element with the
choice r = k2 for the gluon polarization reference vector. For the factor
involving the polarization vector, we find

(

The matrix element then nicely simplifies to

(

Further simplification can be accomplished by momentum conservation.
Note that k1 + k3 = p1 +p2 −k2, so we can make this replacement in the
numerator of the quark propagator (the remaining term with the 

In going from the second to the third line, we have used the Dirac equation
for the spinors  and uL (p1):

(7.105)

Additionally, the σ matrix on the second line is expressed as an outer product
of spinors on the third line:

(7.106)

The final simplification that we can make to the matrix element is to
rewrite the factors from the propagators in terms of spinor inner products.
The remaining momentum dot products can be expressed as



(7.107)

You will prove these identities in Exercise 7.6. With these results, the matrix
element finally simplifies to

(7.108)

which is just a rational function of spinor inner products. This is a remarkable
and remarkably compact expression. To compute the cross section, we just
need to calculate the matrix elements with other helicity assignments, square
them, and insert them into Fermi’s Golden Rule.

To calculate the cross section, we first need to take the absolute square of
the matrix element. For the process we’ve been considering thus far, this is

(7.109)

This expression follows from Eq. 7.108 and the use of identities such as those
introduced in Eq. 7.107. Matrix elements corresponding to different helicity
choices can be found by simply permuting indices appropriately. For
example, if the helicities of the quark and anti-quark are flipped, we have

(7.110)

These matrix elements can be rewritten in the three-body phase space
coordinates represented by energy fractions xi. These energy fractions are
defined as

(7.111)



for i = 1, 2, 3. These energy fractions satisfy x1 + x2 + x3 = 2 and, in the
center-of-mass frame, the four-vector Q = k1 + k2 + k3 = (Ecm, 0, 0, 0). Using
these xi variables, the squared matrix element for the process we’ve been
studying becomes

(7.112)

Here, cos θ is the scattering angle: the angle between the electron–positron
beam and the final-state anti-quark. For just studying the dynamics of the
gluon, we can integrate over cos θ.

Note the physics contained in the expression of Eq. 7.112. The squared
matrix element diverges when either x1 → 1 or x2 → 1. Physically, this
corresponds to either k2 · k3 → 0 or k1 · k3 → 0 from Eq. 7.109. For two
massless four-vectors, this can occur either when k3 → 0 (the energy of the
gluon is small) or when  called the collinear limit. The
existence of divergences in the matrix element in the soft (= low-energy)
and/or collinear limits will have profound physical consequences for
observing phenomena of the gluon. We will discuss this in detail in Chapter
9.

We won’t provide the details, but by summing over external particle spins
and integrating over the scattering angle cos θ, the cross section differential
in the center-of-mass quark and anti-quark energy fractions  is

(7.113)

Here, αs = g2 /(4π) is called the strong coupling constant and CF = 4/3 is the
factor that accounts for the possible different colors of the gluon emitted off
of the final-state quarks. The cross section for quark–anti-quark production is

(7.114)



7.3.5 Tests of a Spin-1 Gluon
Our analysis of the process e+ e− → qqg, where the gluon couples to quarks
in a similar way to photons, makes a number of concrete predictions. First
and foremost, just the existence of such a process is a major prediction. In the
same way that the process e+ e− → qq manifests itself in experiment as dijet
events, e+ e− → qqg manifests itself as three-jet events. An example event
display of a three-jet event recorded at the L3 experiment at LEP is shown in
Fig. 7.3. Three well-defined, collimated streams of hadrons are observed to
have been created from electron–positron collisions, indicative of the
production of a gluon in the final state.



Fig. 7.3 An example of a three-jet event collected at the L3 experiment, one of the detectors on the LEP
collider. The three jets are visible as significant energy deposits in the calorimeters to the left, upper
right, and lower right of the figure. Credit: L3 Experiment © CERN.

The cross section differential in the quark and anti-quark energy fractions
in Eq. 7.113 enables us to learn more about this gluon. Just as we inferred the
spin of quarks from the distribution of the scattering angle, we are able to
infer the spin of the gluon from distributions of the relative angles of the
three jets in the final state. In principle, if we were able to determine which
jets corresponded to the quark and to the anti-quark, then we could measure
their energy fractions and compare directly to Eq. 7.113. However, this isn’t
possible, not the least reason being that we observe hadrons in our detectors,



and not quarks and gluons. So, we have to think a bit more about how to
connect Eq. 7.113 to something we actually measure.

What we can do that is sensible is to measure a function of the three-jet
energy fractions that treats them all equally. This procedure doesn’t require a
unique map from a jet back to quark or gluon. For example, we might
measure the largest energy fraction of the three jets in the final state. This
observable is called thrust τ,16 and is defined in terms of the energy fractions
xi as

(7.115)

On the right, we’ve just written out the three energy fractions for the quark,
the anti-quark, and the gluon xg, which is constrained by their sum equaling
2. The distribution of thrust τ can be calculated from the double differential
cross section of Eq. 7.113 by summing over all phase space regions that
result in the same value of τ. This is accomplished by inserting a δ-function
into the integral over phase space. In particular, the cross section differential
in τ is

(7.116)

Here, Θ(x) is the Heaviside Θ-function, which equals 1 if x > 0 and 0 if x < 0.
Therefore, to predict the distribution of thrust for any model of the gluon, we
just need to know the differential cross section for that model and then do this
integral.

This is a very general procedure and enables us to make predictions for any
observable defined as a function of the phase space coordinates. All we need
to do is replace the appearance of τ and its functional form in the δ-function
of Eq. 7.116 with the observable under study. To test the spin of the gluon, a
very sensitive set of observables are the energy fractions of the most
energetic jet, the second most energetic jet, and the least energetic jet. We
call these energy fractions x1, x2, and x3, respectively. Of course, from our
discussion above, x1 is just thrust τ. The theoretical predictions for the
distributions of the energy fractions x1, x2, and x3 for a spin-1 gluon can be
made and compared to data. This comparison was done at the SLD



experiment at SLAC in the 1990s, and the result is illustrated in Fig. 7.4. The
data from SLD are compared to three predictions for the spin of the gluon:
spin-0, spin-1, and spin-2. The data agree beautifully with the spin-1
hypothesis,

Fig. 7.4 Measurements of the three energy fractions of the jets in e+ e− → three-jet events measured at
the SLD experiment. The data are compared to three predictions for the spin of the gluon: spin-0, spin-
1, and spin-2. The uncertainties in the data points are comparable to or smaller than the squares that
denote the data. Reprinted data from table with permission from K. Abe et al. [SLD Collaboration],
Phys. Rev. D 55, 2533 (1997). Copyright 1997 by the American Physical Society.

while disagreeing significantly with both spin-0 and spin-2 predictions.
Apparently, the gluon is a spin-1 particle!

We’ll work through the analytic prediction for thrust in Example 7.2 and
you’ll study it in more detail in Exercise 7.8. For the predictions of the



distributions of x2 and x3, the lower-energy jets, the calculation is a bit subtle.
For x2, for example, it is possible that x1 = 1, while x2 is anywhere in the
range of [0.5, 1]. However, if x1 = 1, then the cross section diverges, and any
resulting prediction is meaningless. Technically, the energy fraction of the
second or third hardest jets lacks a property called infrared and collinear
(IRC) safety, which is the statement that an observable’s distribution can be
predicted within Feynman diagram perturbation theory. When a particle’s
energy gets very small (infrared limit) or becomes collinear to another
particle, the cross section in general diverges, as mentioned in Section 7.3.4.
In these limits, to ensure that we get sensible results from our calculation, the
observable that we study must push this divergence to a single point on phase
space. For example, for thrust defined as max{xi }, the cross section diverges
if one of the energy fractions approaches 1. However, this is also the largest
energy fraction possible, and so the divergent low-energy and collinear limits
of the cross section are isolated at the point where τ = 1. Away from this
point, our prediction from performing the integral of Eq. 7.116 is sensible.

This point of IRC safety was not mentioned in the original paper that did
the comparison presented in Fig. 7.4, so it is not known if they were aware of
this subtlety. At any rate, to make the predictions for spin-0, spin-1, and spin-
2 particles, the results in Fig. 7.4 impose a cut of x1 < 0.98, which avoids this
singular region. Unfortunately, the consequence of this is that the cross
section that one measures is then an exclusive, rather than an inclusive, cross
section. Thus, one should interpret the conclusions of Fig. 7.4 with some
care, but a more detailed calculation can also be done and essentially the
exact same results are obtained.

Example 7.2 Eq. 7.116 is the abstract expression that enables us to determine
the predicted distribution of thrust in e+ e− → qqg scattering. Let’s calculate
this using the explicit expression for the double differential cross section, Eq.
7.113.

Solution
The first thing that we will do in our prediction of thrust is to determine the
range of possible values of τ. Thrust is defined as

(7.117)



where, in the center-of-mass frame, xi = 2Ei /Ecm. By momentum
conservation, the largest value one of the xi can take is 1; this limit
corresponds to back-to-back jets with equal and opposite momenta. The xi are
restricted to sum to 2 by total energy conservation and so the minimum value
of the maximum of the xi is when all three are equal to 2/3. Therefore, thrust τ
∈ [2/3, 1]. These two limits separate out different kinematic configurations
of the jets. For τ → 1, this is the dijet limit. For τ → 2/3, there are three well-
defined jets with equal energy 120◦ degrees from one another, which is
colloquially referred to as the Mercedes-Benz configuration. These limits
are illustrated in Fig. 7.5.

To calculate the distribution of thrust, we need to do the integrals in the
expression

(7.118)

Fig. 7.5 An illustration of the (left) dijet and (right) three-jet Mercedes-Benz configurations of final
states in e+ e− → hadrons processes which correspond to different limits of thrust τ.

The first thing we need to do is to write the δ-function that restricts to the
measured value of thrust δ(τ − max{xi }) in a useful form.

To do this, let’s first assume that xq is the largest of the xi. Then, xq is
larger than both  and  which can be enforced by the Θ-



functions:

(7.119)

Then, restricting xq to be the largest of the xi yields a contribution to the δ-
function of

(7.120)

We can do the same thing assuming that  and xg are the largest. For  the
double differential cross section from Eq. 7.113 is symmetric in  and
so it will lead to the same value of the integral as when xq is largest. So, for
the configuration when  is largest, we can simply multiply the result of Eq.
7.120 by a factor of 2.

Doing the same thing for when xg is the largest, and noting that 
 we find a contribution to the δ-function of

(7.121)

Combining these three possible configurations, we find

With this expression for the δ-function, we can now do the integral over xq
from Eq. 7.116. That is, we must integrate

Focusing first on the δ-function of δ(τ − xq), we have



Now, let’s integrate over the other δ-function term:

In this expression, we have made the replacement that  as
enforced by the δ-function everywhere.

In this form, we can then combine the results of the two integrals over xq:

This is written in a nice way so we can straightforwardly integrate this over
the anti-quark energy fraction  The integral we need to do is then

(7.127)

In this expression, we have explicitly written the integration bounds as
enforced by the Θ-functions. For this integral to be non-zero, the upper bound
of the integral must be larger than the lower bound of the integral. This
imposes

(7.128)

which is the exact same lower bound of thrust τ that we argued earlier.



There are a lot of integrals to do in Eq. 7.127, and we no longer have δ-
functions around to simplify things. This integral can be done in closed form
in numerous ways. Here, we’ll present one technique for doing them and then
state the result. In Eq. 7.127, we have to do integrals like

(7.129)

We also have integrals like

(7.130)

To evaluate this, we can use integration by parts, but here we use another
trick. We can evaluate it by Taylor series expansion. The Taylor series of the
integrand is

(7.131)

Now, integrating this, we find

(7.132)

To do the infinite sum, make the replacement n + 2 = m and so

(7.133)

Then, we add and subtract x to this result, which yields

(7.134)

Now, we can identify the infinite sum with the Taylor series for the
logarithm:



(7.135)

Therefore, we have calculated

(7.136)

For the last general integral that remains, it can be massaged into a simple
form. Note that

(7.137)

These are all the integrals that we need.
The second term in the integrand of Eq. 7.127 consists of a denominator

with two terms that depend on  To separate them out into simpler
denominators for which we can use the results of the integrals that we just
calculated, we can partial fraction them into two terms. Doing this yields

(7.138)

Now, each term can be integrated straightforwardly.
Using these results for the general integrals that remain and the partial

fractioning, to get to the result there’s a lot of long and tedious algebra which
we won’t do here. When the dust settles, we find

To get the differential cross section in thrust τ, we just need to restore the
overall multiplicative factors from Eq. 7.113. It is common to denote the e+ e



− → qq cross section by σ0:

(7.140)

as it is governed by an intermediate photon and has nothing to do with
gluons. Putting it all together, the cross section differential in the thrust τ is
therefore

This expression manifests the IRC safety of thrust. This cross section is finite
for τ < 1 and only diverges at the single point where τ = 1. In Chapter 9, we’ll
interpret what this divergence means physically.



7.4 Spinor Helicity
By the way, the formalism applied in this chapter for calculating matrix
elements with two-component spinors is called spinor helicity and is widely
used for modern calculations involving complicated Feynman diagrams.17 In
spinor helicity, the two-component spinors are denoted as

(7.142)

(7.143)

With this notation, note that

(7.144)

Also, [pk]〈kp〉 = 2k · p.
In this notation, the matrix element that we calculated is written as

(7.145)

which is exceptionally compact. In addition to its compactness, the spinor
helicity formalism enables simple determination of the matrix element, from
physical requirements. By enforcing the correct limits in which the gluon
becomes collinear to one of the external quarks or has low energy, one can
prove that Eq. 7.145 is the unique amplitude.



Exercises
7.1 Plus-Function Expansion. In the limit that ɛ → 0, the function

(7.146)

has some very strange properties. In Eq. 7.57, we said that it turned
into a δ-function as ɛ → 0. In this exercise, we will study this in more
detail and demonstrate how to expand this function as an infinite sum
of distributions.

(a) As defined above, the function f(x) integrates to 1 on x ∈ [0, 1]:

(7.147)

If we could just Taylor expand the function in ɛ, we would have

(7.148)

Attempt to integrate this expansion on x ∈ [0, 1] for ɛ → 0.
What do you find? Using this result, argue that the Taylor
expansion is unjustified.

(b) If x > 0, what is the value of the function f(x) for ɛ → 0? With
this observation, argue that

(7.149)

(c) As long as x > 0, the function f(x) is finite and so the Taylor
expansion is well defined. All of the problems with the Taylor
expansion in ɛ come from the region where x = 0. With this in
mind, we can use a form of the Taylor expansion that is modified
for x = 0. We denote this by the +-function expansion



(7.150)

Argue that every +-function integrates to 0 on x ∈ [0, 1]:

(7.151)

+-functions are properly distributions, not functions, because
they are formally infinite at x = 0.

(d) This expansion in +-functions is extremely useful, especially
when integrating against an analytic function. An analytic
function g(x) with a convergent Taylor series about x = 0 can be
expressed as

(7.152)

for some numerical coefficients cn. Argue that the integration
over a +-function with an analytic function g(x) is defined as

(7.153)

Note that on the right everything in the integrand consists of
regular functions.

Hint: Show that the left and right side of this equation agree
order-by-order in the Taylor expansion of g(x).

7.2 Breit Frame. In the interpretation of Bjorken scaling in Section 7.2.1,
we introduced the Breit frame, in which the photon that mediates the
DIS process has zero energy:

(7.154)

In general, any space-like four-vector for which q2 < 0 can be Lorentz
transformed into the Breit frame. The Breit frame is also called the



brick wall frame.

(a) For DIS in the Breit frame, how are the initial and final electron
momenta related? Does the term “brick wall” frame make sense?

(b) In the frame in which the proton is at rest, we can express the
momenta of the initial and final electrons pe and pe′ and the
proton pp as

(7.155)

where Ee and Ee′ are the initial and final electron energies and mp
is the mass of the proton. What Lorentz boost would you need to
perform to get the electron momenta in the Breit frame? For DIS
in the Breit frame, what is the momentum of the proton?

7.3 Form Factor Evolution Equation. Evolution equations are very useful
tools in theoretical particle physics. They enable controlled predictive
power as once you know the solution at one point, you can evolve to
find the solution at any other point. In this exercise, we will explore
an evolution equation for the form factor F2 (x, Q2), assuming point-
particle quarks, but that interact in a scale-invariant manner. This will
set the stage for the DGLAP evolution equations which are the
complete theory that describes the energy dependence of parton
distribution functions and form factors.

(a) Show that the expression for the form factor in Eq. 7.53 satisfies
the homogeneous differential equation

(7.156)

(b) This evolution equation in energy scale Q2 can be solved in
terms of the form factor defined at a specified energy 

 Show that the general solution to Eq. 7.156 can be
written as

(7.157)



Written in this way, the exponential factor ɛ is called the
anomalous dimension. From this general expression, determine
the form factor  at energy  from the result of Eq. 7.53.

(c) Assuming that ɛ > 0, what is the solution to Eq. 7.156 as Q2 →
∞? What about when Q2 → 0? These limits are present in
quantum chromodynamics and their interpretation for high-
energy physics will be profound.

7.4 Infrared and Collinear Safety. The principle of infrared and collinear
safety is of fundamental importance when making theoretical
predictions. Observables that are IRC safe have distributions that are
finite and can be predicted by calculating Feynman diagrams and
integrating over phase space appropriately. In this exercise, we’ll
identify the IRC safety or unsafety of several standard observables
that are used to study hadronic final states at electron–positron
colliders.

These observables are expressed in the three-body phase space
coordinates xq and  the energy fractions of the quark and anti-quark.
For each of the observables presented below and their functional form
on this three-body phase space, determine whether the observable is
IRC safe or IRC unsafe. Recall that an IRC-safe observable is one for
which the divergences in the double differential cross section of Eq.
7.113 are mapped to a single, isolated value of the observable.

(a) C-parameter:18

(7.158)

(b) Relative squared energy fractions:

(7.159)

(c) Broadening:19



(7.160)

(d) Ratio of 1− thrust to broadening:

(7.161)

7.5 Properties of Helicity Spinors. As introduced in Section 7.4, the
spinor helicity notation provides a very compact representation of
inner products of two-component Weyl spinors. Because Weyl
spinors transform under the fundamental two-dimensional
representation of the Lorentz group, any particle of higher spin can be
represented by an appropriate product of spinors. In this exercise,
we’ll study two important properties of helicity spinors: anti-
symmetry and the Schouten identity.

(a) Show that the spinor inner product is anti-symmetric:

(7.162)

for two massless four-momenta p and k.
(b) Show that the inner spinor products involving four massless

four-momenta p, k, q, r satisfy the Schouten identity:

(7.163)

Note that both of these identities also hold for the square bracket
inner product [·] because it is just the complex conjugate of the angle
bracket inner product (Eq. 7.144).

7.6 More Helicity Spinors. There were a few points in our calculation of
the matrix element for e+ e− → qqg scattering where we left the
justification to the exercises. We’ll address those here.

(a) In Eq. 7.107, we used a relationship between spinor inner
products and four-vector dot products. For arbitrary massless
four-vectors p and k, prove the equalities



(7.164)

You’ll need to use the expressions for the spinors presented in
Eq. 6.23 of Chapter 6. Without loss of generality, you can work
in the frame in which the three-momentum  is aligned along
the +ẑ-axis.

(b) In Section 7.3.2, we constructed the right-handed helicity
polarization vector ɛR for the gluon from spinors to be

(7.165)

p is the momentum of the gluon and r is an arbitrary massless
reference four-vector. We showed explicitly that this expression
agrees with our familiar right-handed polarization vector.
However, it is enlightening to show that this indeed carries spin-
1 from its properties under rotations.

For simplicity, align the three-momentum of the gluon  along
the +ẑ-axis and perform a rotation by an angle ϕ about the +ẑ-
axis. You only have to rotate the spinors that depend on the
gluon momentum p, and a spinor u is rotated by a matrix M as

(7.166)

For a rotation about the +ẑ-axis by an angle ϕ, the rotation
matrix is

(7.167)

How does the polarization vector ɛR (p) transform under this
rotation? Does this transformation tell you what the spin of the
gluon is?

Hint: What is the smallest angle ϕ for which the polarization



vector is unchanged by this rotation?

(c) The four-vector r is arbitrary and cannot in any way affect the
physical properties of the gluon. Performing a rotation of the
spinors that depend on r, show that the polarization vector ɛR (p)
is completely unaffected. You can now align the momentum r
along the +ẑ-axis and then rotate the r spinors about the +ẑ-axis
by an angle ϕ. This demonstrates that the vector r does not affect
the spin of the gluon at all.

7.7 The Drell–Yan Process. In Example 7.1, we analyzed the Drell–Yan
process in which lepton pairs are produced from hadron collisions. In
Eq. 7.74, we were able to construct a very useful expression for the
cross section differential in the invariant mass of the final-state
leptons Q2 and their rapidity y. A measurement of the rapidity
distribution of the Z boson from proton–anti-proton collisions at the
Tevatron was presented in Fig. 7.2. In this exercise, we will use these
data and the expression for the cross section to extract the functional
form of the parton distribution function for quarks in the proton, fq (x).
This will be a very simplified procedure; collaborations that do this
combine multiple data sets from different experiments. Nevertheless,
we will be able to see interesting features of the pdf in this exercise.
For ease of reference, we reprint the differential cross section here:

(7.168)

(a) If the invariant mass of the final-state leptons Q2 is restricted to
be the square of the mass of the Z boson  express the
momentum fraction x2 of the anti-quark in terms of x1, s, and mZ.

(b) As a function of x1, mZ and s, what is the rapidity y of the Z
boson? You should find

(7.169)

(c) The Tevatron collided protons and anti-protons at a center-of-



mass energy of 1.96 TeV. From the result of part (b), what is the
maximum value of rapidity of the Z? Does this agree with the
plot of data in Fig. 7.2?

(d) This rapidity distribution can be used to extract the parton
distribution functions of the quarks in the proton or anti-proton.
An anti-proton consists of two valence anti-up quarks and one
valence anti-down quark, as it’s just the anti-particle of the
proton. Thus, in pp → Z events at the Tevatron, typically the
quark comes from the proton and the anti-quark from the anti-
proton. We expect that the pdf of a quark in a proton is identical
to that of an anti-quark in an anti-proton because of symmetry
under charge conjugation.

The power of Eq. 7.168 is that the only dependence on rapidity y
appears in the parton distribution functions for the quark and anti-
quark in collision. This tells us that there is a direct map from the
rapidity distribution in Fig. 7.2 to the parton distribution function fq
(x), regardless of the form of the rest of the cross section.

Interpreting Fig. 7.2 as a probability distribution p(y), determine the
functional relationship between the quark pdf fq (x) and the rapidity
distribution p(y). Don’t forget the Jacobian factor, and note that the
rapidity should be evaluated at the value determined in part (b). You
should find

(7.170)

(e) To determine the pdf fq (x), the experiments would take their
rapidity data point by point and map them to a pdf point by point
in x. For the sake of brevity here, just take ten data points on Fig.
7.2 and map them to values of the pdf fq (x). From these ten
points, make a table of momentum fraction x values versus the
pdf value times momentum fraction xfq (x). Make sure the points
are relatively uniform over 0 < |y| < 3, so that you get good
coverage.

(f) Figure 7.6 is a plot from the CTEQ collaboration (Coordinated
Theoretical– Experimental Project on QCD; read: “see-teck”) of



their detailed and precise extraction of parton distributions from
various collider data. In this plot, the parton center-of-mass
collision energy is  which is close (enough) to the
mass of the Z boson for comparison. While not labeled on the
plot, the abscissa is the momentum fraction x, and the ordinate is
xfq (x).

Focus on the pdfs of the up and down quarks (the two pdfs with
maxima visible on the plot). Compare their distributions to your
extraction from part (e). How do they compare; e.g., are the peaks in
about the same place with the same height?

Fig. 7.6 Parton distribution functions from the CTEQ collaboration at a parton collisions
energy of  The abscissa is the parton momentum fraction x and the ordinate is
the momentum fraction times the pdf xf (x). From P. Nadolsky et al., “Progress in CTEQ-
TEA PDF Analysis,” doi:10.3204/DESY-PROC-2012-02/301 [arXiv:1206.3321 [hep-ph]].

7.8 Thrust in Data. Thrust has been extensively measured in data. A huge
collection of plots and tables of measurements from e+ e− collision
experiments are collected at the website
hepdata.cedar.ac.uk/review/shapes/. This is a very useful tool for
data archiving as well as for comparisons of theory predictions to

http://hepdata.cedar.ac.uk/review/shapes/


data. In this exercise, we will make plots of distributions from data of
thrust and compare to our theoretical prediction from Eq. 7.141.

Navigate to this website and click on one of the links for
“THRUST” (they all go to the same place). There are a lot of
measurements here! The cool thing about this website is that you can
select several measurements and overlay their plots. To see this at
work, first, at the top of the page, find the “plot” button. To the right
of that button, select the x- and y-axes as both linear (“lin”).

From here, we’ll select some experimental results to plot on top of
one another. We’ll look at the measurement of thrust in collisions at a
center-of-mass energy of 91.2 GeV corresponding to the mass of the
Z boson. A common way to plot thrust is as 1 − τ rather than τ, which
is what we will do here. Measurements that can be directly compared
are:

ALEPH (Heister et al. ZP C35(2004)457 [R]), Thrust 91.2 GeV
DELPHI (Abreu et al. Zeit.Phys.C73(1997)11 [R]), 1-Thrust
91.2 GeV charged+neutral
DELPHI (Abreu et al. Zeit.Phys.C59(1993)21 [R]), Thrust 91.2
GeV
OPAL (Abbiendi et al. Eur.Phys.J.C40(2005)287 [R]), 1-Thrust
91.2 GeV
SLD (Abe et al. Phys.Rev.D51(1995)962 [R]), Thrust 91.2 GeV.

Select these measurements and then click “plot” at the top of the page.
You should then see an overlaid plot of the data from these
experiments.

Each set of color points corresponds to a different measurement.
These distributions are normalized (integrate to 1), so we’ll only be
able to compare the shape of our analytic prediction from Eq. 7.141 to
these data. Plot this prediction and rescale it by multiplying by an
overall constant to make it as close as possible to the data plots. How
does the prediction compare to the data? What differences do you
notice? How do the endpoints of data and prediction compare? Do
both distributions exhibit the same behavior as 1 − τ → 0?

In Chapter 9, we’ll discuss the problems with the prediction and the
first steps to correct it.



7.9 Research Problem. In our analysis of DIS or Drell–Yan, we had to
posit the existence of parton distribution functions to describe
constituent quarks in the proton. Parton distributions are extremely
well tested and enable quantitative results for scattering processes
involving hadrons. Nevertheless, pdfs are an approximation for a
particular property of the proton wavefunction. What is the limit of
this approximation? What is the complete set of scattering processes
for which parton distributions are sensible?
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8

Quantum Chromodynamics

Models are useful tools for providing a framework in which to think about a
problem. For example, the quark model enables a powerful organizing
principle for thinking about the zoo of hadrons and their relationships.
Nevertheless, models always have limitations. The quark model provides no
mechanism for why or how quarks are bound into hadrons in the first place,
nor can the quark model explain the phenomena of Bjorken scaling and three-
jet production that we observed in Chapter 7. The parton model has similar
limitations. While it provides a concrete explanation for Bjorken scaling, the
parton model doesn’t shed light on why the form factor F2 (x) has the form it
does from Fig. 7.1. Neither of these models can claim to be the definitive
explanation of the interactions of quarks and gluons.

Models have brought us a long way, but we want a theory of this strong
force that binds quarks into hadrons. A scientific theory provides the
explanation without assumptions or qualifications that limit its realm of
applicability. For developing the theory of the strong force, we will follow
our noses guided by principles of quantum mechanics. This theory must
conserve probability and this restriction will essentially provide a unique
understanding and interpretation for the three colors of quarks we need to
explain data. Quarks and gluons are spin-1/2 and spin-1 particles,
respectively, and enforcing conservation of angular momentum restricts their
possible interactions. As the gluon is a massless, spin-1 particle like the
photon, it will have a gauge symmetry that is necessary for it to have only
two physical degrees of freedom. Consideration of all of these constraints
will lead us to quantum chromodynamics, or QCD.

In this chapter, we construct QCD and then discuss some of its
consequences. The formulation of QCD is in many ways similar to that of
electromagnetism, studied in Section 2.2.3, but there are small, but profound,
differences. Unlike the photon, the gluon is charged under the force that it



carries and so interacts with itself. This feature of QCD results in the
phenomenon of asymptotic freedom, for which the strength of the
interactions between quarks and gluons decreases at higher energies.
Asymptotic freedom provides the explanation of Bjorken scaling and the
existence of jets, both of which we explore in detail in Chapter 9.



8.1 Color Symmetry
The first thing we need to do to formulate QCD is to understand the
consequences of the property of quark color. To keep our discussion simple,
let’s consider just one massless quark, described by a spinor solution to the
Dirac equation, ψ. This quark is allowed to have any of three colors, red,
green, or blue, which we will denote by an index i: ψi. i = 1 is red, i = 2 is
green, and i = 3 is blue. As in our discussion of isospin from Section 3.3, in
this colored world we say that the three colors represent a symmetry. Any
linear combination of different colored quarks produces an equally valid
description of the physics. Also like isospin, this color symmetry has nothing
to do with Lorentz transformations; changing a quark’s color does not rotate
its spin or change its momentum. Such a symmetry that is independent of
spacetime transformations is referred to as an internal symmetry. A general
theorem of quantum field theory called the Coleman–Mandula theorem
states that the only possible collection of symmetries are spacetime
symmetries (rotations, boosts, and the like) and internal symmetries.1

We can transform ψi as

(8.1)

for some numbers Uij, and there must be no change in the result of any
possible measurement we could do. We’re dealing with quantum mechanics,
and so there are constraints on the Uij. As a wavefunction, ψi represents the
probability amplitude for measuring a quark with color i. Also, we can take
ψ1, ψ2, and ψ3 to be an orthonormal color basis. With this set-up, the
probability density for color i then transforms as

(8.2)

The subscript and superscript placement of color indices denotes color and
anti-color, respectively, so that the probability density ψ†i ψi has total color 0.
The orthogonal assumption enables us to set products of different color



quarks to zero, ψ†i ψj = 0, for i ≠ j. The normalization assumption means that
the product of a quark and an anti-quark is the same, regardless of color:

(8.3)

Then, to preserve probability, we must enforce

(8.4)

We can use vector notation to represent any linear combination of the three
colored quarks. Let’s take the spinor ψ with no index to denote an arbitrary
linear combination of quark colors:

(8.5)

for some complex numbers a1, a2, a3 such that ψ is normalized so

(8.6)

A color rotation can be expressed compactly by action of a matrix U on the
spinor ψ:

(8.7)

where the action of U on a quark of a given color i is defined by Eq. 8.1.
Conservation of probability is then just the statement that U is a unitary
matrix: U† U = I. U is a 3×3 matrix because there are three colors, and so it is
an element of the group U(3). We can restrict the determinant of U to det U =
1 so that the matrix only implements proper color rotations. Then, rotations
of colors into one another are implemented by matrices in the group SU(3).
Quarks transform in the three-dimensional fundamental representation of
color SU(3).

A general 3 × 3 matrix with complex entries has 18 parameters: 9 real and



9 imaginary numbers. The unitarity constraint fixes 9 of the parameters (one
relation for each entry of the matrix). Restricting to SU(3) matrices U with
det U = 1 provides one more constraint. Therefore, an arbitrary 3 × 3 matrix
that is an element of SU(3) has 8 independent parameters. The Lie algebra of
the group SU(3), denoted by su(3), is therefore an eight-dimensional vector
space with basis matrices Ta, where a = 1, ..., 8. These basis matrices are
Hermitian, (Ta) † = Ta, and a general element of SU(3) can be expressed by
exponentiating the Lie algebra:

(8.8)

where α a are eight real constants, indexed by a. This formalism should be
familiar from our general analysis in Chapter 3, but applied to SU(3) in
particular. In the following example, we will explicitly construct the Lie
algebra basis matrices of su(3).

Example 8.1 What are the eight matrices Ta that span the Lie algebra su(3)?

Solution
We’re looking for eight 3 × 3 matrices that are linearly independent. By
unitarity of elements of SU(3), the matrices in the Lie algebra are Hermitian:
(Ta)† = Ta. Also, a matrix U in SU(3) has determinant 1. In terms of
exponentiation of the Lie algebra, this determinant constraint imposes

(8.9)

On the right, we have identified the determinant with the product of
eigenvalues λ1, λ2, and λ3 of the matrix U.

Now for a bit of trickery. Let’s consider taking the logarithm of matrix U.
The trace of log U is the sum of its eigenvalues. These are just the logarithms
of the eigenvalues of U itself:

(8.10)

While we won’t prove this, all that’s needed to do so is to note that U is non-
singular and that it can be put into diagonal form with an orthogonal matrix



formed from its eigenvectors. Because det U = 1, tr log U = 0, which
immediately tells us that elements of the Lie algebra are traceless:

(8.11)

So, the Lie algebra su(3) consists of eight 3 × 3 matrices Ta that are
Hermitian, traceless, linearly independent, and satisfy the commutation
relation

(8.12)

The standard basis for su(3) are called the Gell-Mann matrices and are

You’ll study more properties of su(3) and the Gell-Mann matrices in Exercise
8.6.

Let’s now see how this SU(3) color symmetry works in a Lagrangian for
the quark. The Dirac Lagrangian for a massless quark, from which the Dirac
equation can be derived, is

(8.14)

On the right, the sum over colors i = 1, 2, 3 is implemented with Einstein
summation notation. That is,

(8.15)

What happens to the Dirac Lagrangian under a color rotation? We know how



ψ transforms:

(8.16)

and, as its conjugate,  transforms as

(8.17)

Under a color rotation, the Dirac Lagrangian transforms as

(8.18)

where we have used that U is just a constant, unitary matrix and so the
derivative passes through it. So, the Dirac Lagrangian is invariant under
SU(3) color transformations.

However, does this conclusion actually make sense? Is the Dirac
Lagrangian of the quark just invariant to color rotations, full stop? Our
arguments for properties of color rotations have so far only used restrictions
from quantum mechanics, such as conservation of probability. However,
there are also restrictions from special relativity, and the implicit assumption
that an SU(3) color matrix U is independent of spacetime position is not the
most general nor the preferred structure.



8.2 Non-Abelian Gauge Theory
So far, we’ve written a color matrix U as

(8.19)

for su(3) Lie algebra elements Ta and constants α a, independent of spacetime
position. Do we have to make this assumption? No, and actually special
relativity would prefer that we do not.

To see what other constraints are imposed by special relativity, let’s
perform the following thought experiment. Consider two people, call them
Emmy and Albert, located at opposite sides of the universe from one another.
They are studying color transformations of quarks and each defines a basis
for color. Emmy’s color basis for quarks is, say, ψ, while Albert’s is ψ ′.
Because there are three colors and probability is conserved, there must exist
some unitary matrix U ∈ SU(3) that relates the two bases:

(8.20)

So, in principle, Emmy and Albert could communicate to figure out this
unitary transformation and align their color bases.

However, they are very far apart, and can only exchange information about
their color bases at the speed of light. Therefore, they cannot instantaneously
align their color bases. Of course, they didn’t have to be on opposite sides of
the universe; they could have been in the same room, or even only separated
by the radius of the proton. As long as they are not at exactly the same
spacetime point, they can’t instantaneously align their color bases. From the
perspective of special relativity, it is more natural to use a different color
basis at every spacetime point. The different bases will be reconciled and
related to one another by an object that implements a color rotation that
travels at the speed of light. Spoiling the punchline slightly, this will turn out
to be the gluon.

So, instead of considering unitary color transformations that are
independent of spacetime position, we consider transformations that are
general functions of position:



(8.21)

where now the coefficients α a (x) depend on the position four-vector x. We
are still allowed to use the same set of basis matrices Ta because we are
always describing the group of symmetries for SU(3) color. Spacetime-
dependent unitary transformations are referred to as gauge transformations.
That is, we will now study the SU(3) color gauge theory.

While this change might seem small, it has profound consequences. Let’s
look at the Dirac Lagrangian again with this spacetime-dependent SU(3)
unitary transformation:

(8.22)

Now the derivative doesn’t commute with the matrix U so we can’t just set
U† U = I. The action of the spacetime derivative on the matrix U from Eq.
8.21 is

(8.23)

Using this, the Dirac Lagrangian transforms under a color rotation as

(8.24)

which is no longer invariant! This is just another way of saying that color
bases at different spacetime points are in general different. The interpretation
of this is the following. The derivative operator ∂μ slightly displaces the
fermion fields that appear in the Dirac Lagrangian, just as the derivative
displaces the argument of a function through the Taylor expansion. We saw
this when understanding the Lorentz invariance of the Dirac Lagrangian in
Section 2.2.2. This implies that the unitary matrix that implements a color
rotation of  is no longer exactly the Hermitian conjugate of the matrix that
transforms ψ. The amount by which these two unitary transformations are not
Hermitian conjugates is given by the final term in Eq. 8.24. If the coefficients
α a (x) change rapidly with spacetime position, then SU(3) color matrices can
significantly differ at neighboring spacetime points.

To restore invariance of the Lagrangian, we need to introduce an object



that can rotate color bases at the speed of light. Recall that we want the
Lagrangian to be invariant under color rotations because we believe that this
is a symmetry of Nature. As a symmetry, by Noether’s theorem, this means
that color is conserved in interactions. This highly restricts the possible
interactions of quarks, which is a good thing for predictivity!

8.2.1 Covariant Derivative
With this in mind, what can we possibly do to construct a Lagrangian that is
invariant to a spacetime-dependent color rotation? We can’t change the
transformation properties of the quarks, but we can introduce a new field
which transforms in such a way as to accomplish this invariance. Let’s
introduce a field  that has a transformation law that exactly cancels the
leftover term in Eq. 8.24. This field has an index a which corresponds to the
color su(3) Lie algebra, which is necessary because the residual
transformation of the Lagrangian in Eq. 8.24 contains a Ta matrix. This new
field also has a Lorentz index μ, which is necessary because the Dirac
Lagrangian has γ μ matrices in it. Then, we will consider the augmented
Lagrangian

(8.25)

where g is called the coupling that controls the strength of the interaction
between the quark and the field  The Lie algebra index a is summed over.
For this Lagrangian to be invariant under a color rotation, the field  must
transform inhomogeneously:

(8.26)

where  is the transformation. Let’s determine what this must be.
Performing a color rotation on the new Lagrangian of Eq. 8.25, we have

(8.27)

For this to be invariant, we need everything to the right of ψγ · ∂ψ to equal
ψgγ · Aa Ta ψ:



(8.28)

or, by removing the quark and anti-quark fields, that

(8.29)

We can solve for the transformation  by multiplying by U on the left and
U† on the right, using U† U = I:

(8.30)

Rearranging, we find the transformation to be

(8.31)

An exceptionally nice way to package the field  is in a covariant
derivative Dμ, which is defined as

(8.32)

Under a spacetime-dependent color rotation, the covariant derivative
transforms to

(8.33)

This transformation can be equivalently expressed in the compact form

(8.34)

This simple transformation is why it is called a “covariant” derivative. Then,
we can write our new Lagrangian as

(8.35)



This then transforms as

(8.36)

which is indeed invariant under an SU(3) gauge transformation. As such, we
refer to this Lagrangian as SU(3) color gauge invariant.

So, in summary, to construct an SU(3) color-invariant Lagrangian for the
quarks, we covariantize the derivative by introducing a new field  whose
transformation exactly cancels that of the quarks. The covariant derivative Dμ
respects the gauge transformation properties of quarks, or any field that
carries color. In differential geometry, this field  is referred to as the
connection of the manifold SU(3). This connection enables us, in a well-
defined way, to differentiate on this non-linear manifold. Consequently, with
a well-defined derivative, we can perform spacetime translation of fields via a
Taylor expansion to give them kinetic energy. We’ll explore these esoteric
mathematical observations in the following section.

8.2.2 Connections and Curvature
The kinetic energy, and therefore the Lagrangian, of the field  must be both
SU(3) color gauge invariant and Lorentz invariant, just like the Lagrangian
for the quarks, Eq. 8.35. From the earlier arguments, to construct the
Lagrangian for  we must use the covariant derivative, Dμ. One way to do
this is to systematically add terms into a potential Lagrangian to eventually
make it gauge invariant, a technique called the Noether procedure. In some
ways, this would be similar to our approach for constructing the scalar field
Lagrangian in Section 2.2.1. Here, however, we’ll take a different and much
simpler approach.

The kinetic energy of  or any object in general, is a measure of the size
of the derivative of  The derivative of  in turn, implements a small
displacement in spacetime position of the field. If the field  changes rapidly
(corresponding to large kinetic energy), then the color basis with which the
covariant derivative is defined also changes rapidly in spacetime. Similarly, if
the field  changes slowly (corresponding to small kinetic energy), then the
color basis with which the covariant derivative is defined also changes slowly
in spacetime. So, if we had a way to measure how quickly the color basis



changed in spacetime, this would provide a measure of kinetic energy.
Determining how the color basis changes in spacetime is a subtle

procedure, however. For instance, let’s consider two nearby spacetime points,
x1 and x2. We imagine traveling from x1 to x2 along a path ℓ like so:

As we travel from x1 to x2, we want to measure how much our color basis is
rotated. Then, once at point x2, we can compare before and after.
Unfortunately, this comparison isn’t well defined in general. We can’t in a
well-defined way compare quantities at two separate points on a non-linear
manifold. As an illustration of this, consider two people, one in Minsk,
Belarus, and the other in Johannesburg, South Africa.2 If you ask both of
those people to point “up,” they will point something like:

Though the person in Minsk and the person in Johannesburg are doing the
exact same thing, these “up” directions are not the same! It’s unclear how one
can compare them, and actually one can’t. What you can do, though, is to
compare at the same point.

We can see a way forward to defining kinetic energy of  by taking this
analogy to the round Earth seriously. At every point in spacetime, there is an
SU(3) color manifold which defines the color basis at that point. A schematic
illustration of this idea is:



The grid corresponds to spacetime points while the light/dark gray spheres
represent the internal color space. Note that the light/dark poles on these
spheres are rotated with respect to one another at each point. As we move
around in real spacetime, we move in the internal color space because the
color basis everywhere in spacetime is in general different. The rate at which
color bases change is a measure of kinetic energy of 

These color manifolds have been drawn suggestively: they are non-linear
manifolds, in general. A non-linear manifold, simply, is one for which the
Pythagorean theorem and Euclid’s postulates of planar geometry do not hold.
Colloquially, we would say that non-linear manifolds are not flat: they have a
non-zero curvature. If the curvature of these manifolds is small, then one
must perform a substantial color rotation between neighboring spacetime
points to change the color basis; while if the curvature is large, then a small
color rotation can produce a large change in color basis. We’re getting closer
to our goal. If we can determine the curvature of these color manifolds, then
we have a kinetic energy.

A powerful way to measure curvature on a manifold is to use the notion of
parallel transport. Let’s introduce parallel transport by going back to our
picture of the curvature of the Earth. Parallel transport can be used to prove
that the Earth is curved and not flat. The idea is the following. Start
somewhere on the Equator of the Earth, say with two vectors that each point
north. With each of these vectors, one takes a different route to the North
Pole while maintaining the orientation of the vectors. First, we can take the
route directly to the North Pole. We can also take the route that first travels a
distance s along the Equator, and then goes to the North Pole along a line of
longitude. Though different paths to the North Pole are taken, the vectors
always point north; they are parallel transported from the Equator to the
North Pole. An illustration of this is presented in Fig. 8.1.



Fig. 8.1 An illustration of parallel transport of two vectors from the Earth’s Equator to the North Pole.
One vector travels directly to the North Pole, while the other first travels a distance s along the Equator,
maintaining its orientation, and then north.

Once both vectors reach the North Pole, we can then compare them. For
the vector  along the first path that went directly to the North Pole, at the
North Pole it is, say,

(8.37)

For the vector  that first traveled along the Equator, once at the North Pole
it is

(8.38)

The radius of Earth is r and therefore the angle θ about which the vector was
rotated when traveling along the Equator is θ = s/r. The magnitude of the
difference between these vectors is

(8.39)

If s ≪ r, then we can Taylor expand the sine. The curvature of the Earth, κ
(the inverse of its radius), is then just the magnitude of the difference of these
parallel transported vectors, divided by the difference in distance of the paths
taken:

(8.40)



for s ≪ r.
With this result in mind, we want to perform a similar action for SU(3)

color to determine the curvature, and therefore the kinetic energy, of the 
field. Our approach is the following. Consider parallel transport to spacetime
point x2 from x1 along two different paths: in the μ direction first and then in
the ν direction, and vice-versa. The picture of this is:

Concretely, we consider the Taylor expansion of quark field ψ about point x1
to point x2 in two different ways. Let’s call the distance in the μ direction
from x1 to x2 Δx while the distance in the ν direction is Δy. Then, we have

(8.41)

Consider path 1 first. Along this path, going backward from x2 to x1, we
Taylor expand in Δy first and then in Δx. This produces

(8.42)

where terms at higher order in the expansion are in the · · ·. In the final line,
the derivatives are taken with respect to point x1. By using covariant
derivatives, we have parallel transported the color of the quark from x1 to x2.
For path 2, we do the Taylor expansions in the opposite order: first expand in
Δx and then in Δy. This produces

(8.43)



If the internal SU(3) color manifold were linear, then regardless of the path
from x1 to x2 we would find the exact same expansion. However, as with the
example of the Earth’s curvature, we can determine the curvature of the
internal manifold by taking the difference of the parallel transport of the
quark along the two paths:

(8.44)

where we have ignored terms in the expansion at cubic and higher orders in
Δx and Δy.

The object in parentheses on the right side of Eq. 8.44 turns out to be
independent of the quark ψ, as it should be. This difference of covariant
derivatives is strictly a measure of the curvature of the internal SU(3) color
space, and is independent of what objects are defined on it. This difference is
the commutator of covariant derivatives:

(8.45)

Using the commutation relations of the Lie algebra matrices Ta, the object 
 is defined to be

(8.46)

where f abc are the structure constants of the su(3) Lie algebra. Because SU(3)
is a non-Abelian group, the structure constants cannot all be 0.

This commutator is called the curvature tensor in geometry and the
Yang–Mills field strength tensor  in physics. It is named after Chen-
Ning Yang and Robert Mills, who first constructed the non-Abelian case in
the 1950s.3  is a measure of the curvature of the internal symmetry group
SU(3) with connection  If the curvature is small, the connection 
changes slowly,  is small, and thus the radius of curvature is large. This



corresponds to a long-wavelength or low-energy excitation produced by 
By contrast, if the curvature is high,  is large and wavelengths are small.
Thus, this corresponds to a high-energy excitation. This motivates  as a
measure of the momentum of the field  As a momentum, we just need to
square it appropriately, and we have the Lagrangian.

Just like the covariant derivative,  transforms covariantly under an
SU(3) gauge transformation:

(8.47)

 has naked Lorentz indices (and so transforms under boosts and rotations)
and is not invariant under color rotations. However, this can be made
invariant by squaring and taking the trace over color matrices. The quantity

(8.48)

is both Lorentz and color invariant. The Lorentz invariance is clear: all
Lorentz indices μ and ν are contracted. To see the gauge invariance, note that
the trace is cyclic. The SU(3) gauge transformation of the trace is

(8.49)

By convention, we can normalize the Ta matrices so that

(8.50)

which is called the Killing form.
Finally, the gauge-invariant, Lorentz-invariant description of the theory of

SU(3) color symmetry is the Lagrangian

(8.51)

In this expression, we have already evaluated the Killing form, and so the Lie
algebra index a is summed over. The −1/4 comes from matching the kinetic
energy of the field  to its canonical value. The field strength  creates



gluons, which correspond to the field  the force carrier that talks to the
quarks through the covariant derivative. This theory combines every
observation we have discussed about the strong force: spin-1/2 point particle
quarks, three colors, and a force carrier gluon. As it is the quantum theory of
color it is called quantum chromodynamics, or QCD. Extremely
importantly, connecting to our original motivation, note that there is no mass
in the Lagrangian of QCD for the gluon field  The gluon is necessarily
massless, which is a requirement for color conservation.4

By the way, general relativity can be formulated in the same language as
SU(3) color. In this way we think of general relativity as the gauge theory of
Lorentz transformations. That is, we allow every point in spacetime to have a
different Lorentz transformation. This exactly corresponds to general
covariance, or diffeomorphisms.



8.3 Consequences of Quantum Chromodynamics
Superficially, the Lagrangian of QCD in the form of Eq. 8.51 appears similar
to the Lagrangian of quantum electrodynamics, QED, presented in Eq. 4.73.
The QCD Lagrangian, however, has a Lie algebra index a on the field
strength tensor and this makes all the difference. Because the group SU(3) is
non-Abelian, the structure constants fabc are not all 0 and so there are terms in
Eq. 8.51 that are cubic and quartic in the gluon field  Such terms are
responsible for self-interactions of the gluon, which is ultimately responsible
for the phenomenon of asymptotic freedom. In this section, we study
consequences of the QCD theory, described by the Lagrangian in Eq. 8.51.

8.3.1 Masslessness of the Gluon
As mentioned earlier, the gluon in QCD is massless. If the gluon were
massive, then there would be a term in the Lagrangian of the form

(8.52)

where m is the mass of the gluon as required by the Klein–Gordon equation.
However, such a term is forbidden by color conservation as it is not invariant
under an SU(3) color rotation. So, the gluon communicates color at the speed
of light, just as the photon communicates electromagnetism at the speed of
light. You will show that this term is indeed not gauge invariant in Exercise
8.1.

8.3.2 Gluon Degrees of Freedom
Though the gluon field  has four components (denoted by the μ index), it
actually only has two degrees of freedom. To see this, let’s focus on  and
ignore interactions (set g = 0). Then, we have

(8.53)



Those gluons that are allowed to propagate, i.e., move through space and
time, must have a time derivative in the Lagrangian. This ensures that their
equation of motion has a time derivative. So, we must have, say, μ = 0
corresponding to the time entry as

(8.54)

Naïvely,  has four spacetime components, one for each μ index. However,
μ = 0 is not allowed to propagate. If μ = ν = 0, then  and so  has no
time derivative in the Lagrangian. So,  has (at most) only three degrees of
freedom.

However, it’s worse than that.  transforms under color rotations as

(8.55)

We have the freedom or ability to choose α a (x) as we please. Doing this
fixes a gauge, and can be used to remove another degree of freedom of 
For instance, we might impose that

(8.56)

This eliminates a degree of freedom along the direction in which  is
propagating. To enforce this we just require that α a (x) satisfies

(8.57)

This is called Lorenz or Landau gauge.
So, there are only two propagating degrees of freedom of  These

correspond to the two helicity configurations of the gluon: left- and right-
handed.

8.3.3 Self-Interaction of the Gluon
Another prediction just from the Lagrangian of QCD is that gluons interact
with themselves. This is very different than electromagnetism! Recall that the
photon part of the electromagnetic Lagrangian is



(8.58)

where Aμ is the photon field. The equation of motion found from varying the
Lagrangian with respect to Aμ is

(8.59)

In Lorenz or Landau gauge, ∂ · A = 0 and so the equation of motion reduces
to the Klein– Gordon equation,

(8.60)

That this is a linear differential equation (as are all of Maxwell’s equations)
has huge consequences for electromagnetic phenomena. One of the most
central features of electromagnetism is the principle of superposition. That is,
the electric or magnetic fields at any point can be found by just summing
individual components of the fields that come from different sources.

In the context of the Klein–Gordon equation, if  and  are two
electromagnetic potentials that each satisfy the Klein–Gordon equation, then
so does their sum:

(8.61)

Another way to state the property or of linearity/superposition of
electromagnetism is in relation to the interaction of the photon. The photon
carries no electric charge and so does not interact with itself. A photon
traveling through space will pass right by another photon, without so much as
a hello. Because photons do not interact with themselves, Maxwell’s
equations are linear. In a pithy way we might say that photons cannot beget
more photons.

This is to be contrasted with the case in QCD. The field strength tensor for
the gluon is

(8.62)

The final term, which is quadratic in the gluon fields, is not present in
electromagnetism, and is responsible for gluons interacting with themselves.



From the pure gluon component of the QCD Lagrangian, we can vary it
with respect to  to determine the Euler–Lagrange equations of motion. One
finds

(8.63)

Expanded out, this is

(8.64)

This is a highly non-linear differential equation for the gluon potential field 
 In this expression, the importance of non-linear terms is controlled by the

coupling of QCD, g. If g goes to 0, the equations of motion become linear
and turn into the same expression as for electromagnetism, Eq. 8.59, but in
general g is non-zero.

Because this equation of motion is non-linear, the field  does not satisfy
the principle of superposition. Two fields  and  each of which satisfy
the equation of motion, cannot be summed into another solution. This makes
QCD a hard theory to understand. It is not known how (or even if) the
equations of motion can be solved exactly, in general. However, some special
exact solutions to the equations of motion do exist. You’ll study the instanton
solution to the equations of motion in Exercise 8.3.

Another thing to note is that the gluon, unlike the photon, itself carries a
charge of the force that it communicates. The gluon field  has that SU(3)
color index “a,” which can take one of eight possible values as there are eight
basis matrices of the su(3) Lie algebra. We say that gluons carry color, and
we might say that

Gluons beget more gluons.

We aren’t yet to the bottom of all the weirdness of QCD.

Tests of Gluon Self-Interaction

QCD predicts that the gluon interacts with itself, and this should have



experimental consequences that can be observed. One way to test the gluon
self-interaction and whether it is as described by QCD is to study properties
of the final state in e+ e− → four jets events. We’ve exploited e+ e− → two
jets and e+ e− → three jets previously to determine the spin of quarks and the
gluon. However, in each of these processes, either no identified gluon was
produced or it was produced just like a photon would be from accelerating
charged particles. We can first directly probe the gluon self-interaction with
four identified jets in the final state.

We won’t present a complete calculation of the Feynman diagrams for
four-jet production. Two of the Feynman diagrams for e+ e− → four jets
production with two gluon jets are

The first diagram would exist if the gluon were just like the photon. Multiple
gluons can be emitted from color-charged quarks, just as photons can be
emitted from electrically charged electrons. The second diagram has no
analogue in electromagnetism and only exists because the gluon couples to
itself. In particular, the terms in the QCD Lagrangian that are cubic in the
gluon field  are responsible for the gluon–gluon–gluon vertex in the second
diagram. In observing e+ e− → four jets events, that second diagram will
affect the differential cross section and produce a prediction that differs from
what one would expect if the gluon were just like the photon.

When squared to calculate the cross section, the diagrams pick up factors
that count the number of colors that can be shared at each vertex. We’ve



already seen one of these before. In the calculation of the cross section for e+

e− → qqg in Section 7.3.4, we included a factor CF = 4/3 which accounted for
how gluons that are coupled to quarks could share color. CF is called the
fundamental Casimir of SU(3) and appears whenever particles in the
fundamental representation of SU(3) color (like quarks) emit gluons. There
are more colors of gluon than of quark and so when gluons couple to gluons,
there are more colors that can be exchanged. Whenever the process has a
diagram like the one on the second line of Eq. 8.65, factors of CA = 3 appear,
called the adjoint Casimir of SU(3). Thus a consequence of the non-Abelian
nature of QCD for gluon self-interaction is its proportionality to CA. You will
calculate both of these Casimir factors in Exercises 8.6 and 8.7.

So if we have a method for measuring CA we can verify the non-Abelian
structure of QCD as well as verifying that the gluon interacts with itself as
predicted with an SU(3) gauge symmetry. This test was done at the DELPHI
experiment at LEP. DELPHI measured numerous observables that were
sensitive to gluon self-interaction such as the angle between the two lowest-
energy jets. Most of the time, the two jets with the least energy will be the
gluons from Eq. 8.65. In the calculation of the cross section for e+ e− → qqg,
we observed that the result had divergences when the gluon had low energy
in Eq. 7.113. This holds true for the process e+ e− → qqgg, and the two
diagrams in Eq. 8.65 predict different angular distributions for those gluons.
This can be used to determine the relative size of the CF versus CA
contributions to the cross section.

The results of the DELPHI analysis are presented in Fig. 8.2. Here, the two
axes are the ratio of the number of quark to gluon colors NC /NA and the ratio
of Casimirs CA /CF. In QCD, there are eight gluon colors and three quark
colors and so NC /NA = 3/8, while, from earlier, CA /CF = 9/4. The location on
this plot for SU(3) QCD is denoted by the shaded circle. Numerous other
points on this plot denote where other Lie groups would sit, which would
predict different numbers of colors and different Casimirs. In particular, if
QCD were just like electromagnetism, it would be located at the point (0, 1),
with a gluon that does not interact with itself. The mean value of their data on
this plot is denoted by the star, and errors are represented by the ovals.
Excellent agreement with the QCD prediction is observed, giving confidence
that SU(3) is indeed its gauge group. There are other groups that are also



consistent with data, though, so this analysis alone isn’t the final word on
determination of the gauge group of QCD. We’ll see other evidence for the
validity of SU(3) QCD in the next section.

Fig. 8.2 Result of an analysis of e+ e− → four jets events collected at the DELPHI experiment at LEP.
Using multiple observables sensitive to the self-interaction of the gluon, DELPHI was able to constrain
the ratio of quark to gluon colors NC /NA versus the ratio of Casimirs CA /CF. Reprinted by permission
from Springer Nature: Springer Nature Z. Phys. C, “Measurement of the triple gluon vertex from four-
jet events at LEP,” P. Abreu et al. [DELPHI Collaboration] (1993).



8.3.4 The Running Coupling and Asymptotic Freedom
We defined the fine structure constant α as the strength of electromagnetism.
α controls the cross section for e+ e− → hadrons scattering, as well as setting
the size of the electric potential between charged particles. Its value is α ≃
1/137, so corrections to the cross section for e+ e− → μ+ μ− that we calculated
were small, and so could be ignored. But, this is quantum mechanics, and so
everything is only as good as our measurements allow. To actually determine
the value of the fine structure constant, we need to describe the measurement
we would perform.

The Running Coupling of Quantum Electrodynamics

One way in principle to measure α is the following. It will happen to be
impractical, but provides insight into the physics of what we are sensitive to
when measuring α. Let’s imagine we have an electron sitting in space. To
measure α, we need to know how strongly a photon couples to that electron.
So, we could shine a laser onto the electron and observe what happens.
Schematically, the set-up is illustrated as:

This can be represented by the Feynman diagrams

This process is called Compton scattering after Arthur Compton.5 In setting
the electron out like this, however, some strange things happen.

Because electromagnetic waves propagate through vacuum, the vacuum
must be a medium. As a medium, it is a dielectric; it can be polarized in the
presence of a charged particle, like an electron. How does the electron
polarize the vacuum? It creates an electric field in which virtual particles
have a preferred orientation. That is, because of the negative charge of the
electron, virtual positrons and electrons orient themselves in this field as:



Here, the virtual e+ e− pairs are denoted by the blobs. These virtual particles
screen the electron’s electric field so that it appears weaker at larger distances
than what you would expect for a point charge. Correspondingly, if you
defined the electron’s charge from a measurement of its electric field, you
would find that the value of the fundamental charge e is smaller when you are
further away. Because the fine structure constant is defined in natural units as

(8.66)

it appears that α is smaller when you are further away.
With this insight, let’s go back to our experiment of shining light on the

electron. If the wavelength of light is long (that is, low energy), then the light
is scattered by the virtual particles before it gets close to the electron:



So, a low-energy photon sees a small value of α. By contrast, if the photon is
high-energy or short-wavelength, it penetrates further into the cloud:

This photon would see a larger value of α! That is, the fine structure constant
depends on the energy or wavelength at which it is measured. To denote this,
we refer to it as a running coupling (its value changes or “runs” with
energy) and write α(Q), for energy Q.

This energy dependence can be calculated in quantum field theory. The
Feynman diagram which describes the first approximation to the energy
dependence of α is

(8.67)

This diagram represents corrections to the electron–positron–photon vertex,
whose value is proportional to the fundamental electric charge e. An external
photon comes in from the top of the diagram and interacts with virtual
electrons and positrons which then communicate the photon interaction to the
real electron and positron at the bottom of the diagram. Note that this diagram



has a “loop” in it. By conservation of energy and momentum at every vertex
in this diagram, any possible four-momentum can flow around the loop,
regardless of the momenta of the external electron, positron, or photon.
Consideration of how the value of this diagram changes with the momentum
that is flowing in the loop enables a determination of the running coupling
α(Q).

The way that this energy dependence is typically expressed is via a
quantity called the β-function (read: “beta-function”) for α. The β-function
encodes the derivative of α with energy:

(8.68)

The leading-in-α term of the β-function for α calculated from the diagram in
Eq. 8.67 is

(8.69)

We can solve the differential equation for α as a function of energy Q:

(8.70)

Integrating both sides, we have

(8.71)

or that

(8.72)

Here, Q0 is some reference energy scale (like the Z boson mass, for example)
and α(Q0) is the value of the fine structure constant at that energy. Note that
this indeed expresses the expectation for the energy dependence of α: as Q
increases, the denominator decreases, and so α(Q) increases. Again, we have



a nice picture of this as resulting from polarization of the vacuum.

The Running Coupling of Quantum Chromodynamics

In the QCD Lagrangian, we introduced the coupling g that controls the
strength of interaction of the gluon to itself and to quarks. When used in
Feynman diagrams and to calculate cross sections, g will be squared, and so
we introduce the strong coupling αs :

(8.73)

Not surprisingly, the value of αs, like α, depends on the energy at which it is
probed. In QCD, we can calculate appropriate diagrams to determine the β-
function of αs. There are three diagrams to compute now:

(8.74)

That is, we determine the corrections to the coupling g of quarks to gluons
and gluons to gluons from these one-loop diagrams. This calculation is more
involved than determining the β-function for α, but the same procedure



applies. The β-function for αs was first calculated by Gerardus’t Hooft, David
Politzer, David Gross, and Frank Wilczek.6 They found

(8.75)

This result is arguably one of the most important in particle physics.
Unlike α, there are two contributions to the β-function for αs. First, the
positive 2/3nf term is the contribution from quarks. nf is the number of active
quarks that can contribute to the β-function as virtual particles in the loop of
the second diagram in Eq. 8.74. An active quark contributes to the β-function
if the energy Q at which the interaction is being probed is larger than twice
the quark’s mass. The interpretation of this 2/3nf term is exactly like the β-
function for α. Pairs of quarks and anti-quarks pop in and out of the vacuum
and effectively screen the color charge of a particle. Therefore this
contribution works to increase αs as energy increases.

The −11 term is the contribution from gluons. Because the gluon itself
carries color, gluons can pop in and out of the vacuum to affect the color
charge of a particle. This is totally different than for α, and has no analogue in
classical mechanics. Apparently gluons are responsible for strong anti-
screening: gluons work to decrease the size of αs as it is probed at higher and
higher energies. The Standard Model has six quarks (up, down, strange,
charm, top, bottom), and so nf is at most 6. Even with all of the Standard
Model quarks around,

Box 8.1 Historical Profile: Gerardus’t Hooft

Because of the structure of hadrons and the strongly interacting nature of
quarks, in the 1960s very few people in the world accepted that quantum
field theory could describe these phenomena. Two of the few who were
continuing to develop quantum field theory were Martinus Veltman and
his student, Gerardus’t Hooft. Gerardus’t Hooft made fundamental
contributions to theoretical physics in the 1970s, by showing that the
theory of the weak interactions was mathematically consistent,7 developing
crucial aspects of what would become string theory, 8 first calculating the
quantum effects of topological objects called instantons, 9 and identifying



issues with a potential quantum theory of gravity.10 ’t Hooft knew of
asymptotic freedom and the value of the β-function in the SU(3) color
theory as early as 1972 (it was not yet called QCD). During a conference in
Marseille, he wrote the result on a blackboard, but never published it, as he
had other projects to finish first. Politzer, Gross, and Wilczek published
their results a year later. For more history, see ’t Hooft’s recount of the
time in G. ’t Hooft, “When was asymptotic freedomdiscovered? Or the
rehabilitation of quantum field theory,” Nucl. Phys. Proc. Suppl. 74, 413
(1999) [arXiv:hep-th/9808154].

(8.76)

and so the β-function of αs is negative! Apparently, the strong force QCD
gets “weaker” at higher energies.

Solving the β-function equation for αs (Q), we find

(8.77)

As Q → ∞, αs (Q) → 0. This feature is called asymptotic freedom: at
asymptotically high energies, quarks interact more and more weakly,
becoming like free (= non-interacting) particles. This feature of asymptotic
freedom will have profound consequences for the phenomena of QCD at high
energies. We’ll explore two phenomena that are consequences of asymptotic
freedom, parton evolution and jets, in Chapter 9.

Asymptotic freedom and the running of αs in general can be tested in
experiment. Figure 8.3 plots numerous measurements of αs (Q) as a function
of energy scale Q, ranging from Q = 5 GeV up to almost Q = 2 TeV. Many of
these measurements come from the CMS experiment at the LHC in which the
value of αs is extracted from measurements of cross sections for jet
production. Because individual quark and gluon partons actually interact in
proton collisions and produce other quarks and gluons that turn into jets in
the final state, the value of αs controls the rate of jet production. By



measuring the cross section for jet production as a function of the jet
transverse momentum, the energy dependence of αs can be extracted.
Excellent agreement between the data points and the predicted running
coupling from the QCD β-function is observed (the solid line). The predicted
energy dependence requires an input of the value of αs at one energy; CMS
uses the value at Q = mZ to be αs (mZ) = 0.1164, and the uncertainty on that
value is represented by the shaded band.

Fig. 8.3 A collection of various measurements of the strong coupling αs at energy scales Q ranging
from 5 GeV to nearly 2 TeV. The solid line is the predicted running from the QCD β-function with the
input value αs (mZ) = 0.1164. From V. Khachatryan et al. [CMS Collaboration], “Measurement and
QCD analysis of double-differential inclusive jet cross sections in pp collisions at  and
cross section ratios to 2.76 and 7 TeV,” J. High Energy Phys. 1703, 156 (2017) [arXiv:1609.05331
[hep-ex]].

8.3.5 Low-Energy QCD
While asymptotic freedom of QCD leads to the explanation of numerous
phenomena at high energies, it provides an intriguing first step to



understanding low-energy phenomena of QCD as well. Let’s go back to the
expression of the running coupling of QCD:

(8.78)

This was calculated with Feynman diagrams, and the accuracy of Feynman
diagrams improves as the value of αs decreases. Thus the prediction of
asymptotic freedom is robust: at higher and higher energies, αs gets smaller,
and so we trust the prediction of asymptotic freedom more. However, it
seems like we can make another statement, too. Apparently, as the energy
decreases, the value of αs increases. In particular, there is an energy scale at
which the coupling diverges. The denominator of Eq. 8.78 is zero at an
energy scale Λ for which

(8.79)

or that

(8.80)

for some initial energy scale Q0. The energy Λ at which the coupling diverges
is called the Landau pole, after the Russian physicist Lev Landau. 11 This is
also a manifestation of the phenomenon of dimensional transmutation: the
energy dependence of the dimensionless coupling αs has introduced a new
dimensionful scale Λ.

The location of the Landau pole is extremely suggestive. We have to be
very careful interpreting it because the prediction of the running coupling
used Feynman diagrams, and when the coupling is very large, Feynman
diagrams cease making sense. Nevertheless, let’s see what we find. For
concreteness, let’s set the scale Q0 = mZ, the mass of the Z boson for which
mZ = 91.18 GeV. According to the PDG, the value of αs at the mass of the Z
boson is αs (mZ) = 0.118. Knowing the answer ahead of time, we will set the
number of active quarks at nf = 3, which is the number of quarks which have



masses less than Λ. With these parameters, we then find Λ to be

(8.81)

Recall that the mass of the pions is about 135 MeV and the masses of the
proton and of the neutron are each about 938 MeV. Other hadrons such as
kaons, rho mesons, sigma baryons, etc., have masses in this ballpark also.
That is, from calculating some Feynman diagrams with quarks and gluons to
determine the running coupling, the location of the Landau pole of αs is
comparable to masses of hadrons! Very cool.

So, does this mean that the running coupling predicts the existence of
hadrons in QCD? Not quite. Because we cannot trust the accuracy of
Feynman diagrams when αs is large, a Feynman diagram analysis alone isn’t
sufficient to claim victory of understanding the hadron masses. At any rate,
there is still a lot to learn from the Landau pole. Apparently, as one probes
QCD at lower energies, quarks and gluons interact more and more strongly.
At sufficiently low energies (comparable to the scale of the Landau pole), it
takes greater and greater energy to pull quarks apart from one another. That
is, at low energies, because αs is getting so large, quarks form states that
cannot be separated; that is, they form bound states through a process called
confinement. These bound states also have zero net color, otherwise they
would interact with gluons and get stuck to other colored states. These
colorless bound states are hadrons and are a consequence of the strong
coupling of QCD at low energies. By the way, this description of low-energy
QCD is an example of a duality in particle physics. There are two different,
yet equivalent descriptions of QCD at low energies. One can either consider
strongly interacting quarks and gluons, or consider colorless, and therefore
relatively weakly interacting, hadrons and describe the same physics.

However, to actually make predictions for phenomena in low-energy QCD,
we have to choose one of these descriptions. Doing so takes us out of our
comfort zone of using Feynman diagrams for prediction. Either we describe
the physics with quarks and gluons, but αs is enormous, and so Feynman
diagrams are useless; or we can describe the physics with hadrons, but we
never directly see hadrons in the Lagrangian of QCD in Eq. 8.51. So, what do
we do? One approach is to develop a theory of weakly interacting hadrons,



which is called chiral perturbation theory. Another approach, which we
will discuss in some more detail here, is to keep plowing ahead with the
quark-and-gluon description of QCD at low energies. Clearly Feynman
diagrams aren’t the way to make progress. Instead, one attempts to
completely describe all quark and gluon interactions but restricted to discrete
points in spacetime. This is known as lattice QCD, and was initially
developed by Kenneth Wilson in 1974 as an attempt to predict the
confinement of quarks.12

In lattice QCD, one discretizes spacetime as well as making it finite, with
no assumption that αs is small. On this spacetime lattice, one can then
simulate the quark and gluon fields and their interactions as governed by the
Lagrangian of QCD. In the limit in which the spacing of the lattice goes to
zero and the number of lattice points goes to infinity, one then recovers the
continuum description of QCD, as exists in our universe. So, the goal of
lattice QCD is to simulate as many spacetime lattice points as possible to get
as close as possible to a description of our universe. The challenge is that this
is enormously computationally intensive and requires using some of the most
powerful supercomputers in the world. The most state-of-the-art lattice QCD
calculations use spacetime lattices with about 106 sites, corresponding to only
about 32 sites in each dimension. Nevertheless, this is an extremely active
field that has applications for a broad range of physical phenomena including
nuclear physics, astrophysics, collider physics, and purely theoretical
questions.13 Despite these challenges, lattice QCD is able to make precise,
quantitative predictions. Figure 8.4 shows the prediction of the spectrum of
hadron masses from lattice QCD, just using three measured hadron masses as
inputs!



Fig. 8.4 Predicted spectrum of hadron masses from lattice QCD with π, K, and Ξ hadron masses as
inputs. The lattice QCD predictions with uncertainties are the filled dots. From S. Durr et al., “Ab-initio
determination of light hadron masses,” Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]].
Reprinted with permission from AAAS.



Exercises
8.1 Masslessness of the Gluon. We hypothesized that the gluon was a

massless particle, in analogy with the photon. If the gluon were
massive, then there would be a mass term in the Lagrangian of QCD
like

where mg is the mass of the gluon. Perform an SU(3) color gauge
transformation of the gluon field  and show that such a mass term is
not invariant. What does it transform into? Simplify the expression as
much as you can. Are there classes of gauge transformations that do
leave the mass term invariant?

8.2 Bianchi Identity. Just as with electromagnetism, the field strength
tensor of QCD satisfies the Bianchi identity. In QCD, however, the
Lie algebra structure is extremely important for consistency of the
theory. In QCD, the Bianchi identity is

(8.82)

(a) Show that the Bianchi identity is only satisfied in QCD if the
structure constants satisfy

(8.83)

This relationship is called the Jacobi identity and is a
requirement for associativity of a Lie group.

Hint: Use the representation of the field strength tensor as a
commutator of covariant derivatives.

(b) Show that, for the commutator [Ta, Tb] for elements Ta and Tb in
a Lie algebra, the Jacobi identity is satisfied as

(8.84)



Prove this relationship by expanding out the commutators.

8.3 Instantons. Instantons are solutions to the classical equations of
motions of a Yang– Mills theory, like QCD. Their name derives from
the property that they are localized in space and time and therefore
have similarities to particles. Because of this, they were also
historically called “pseudoparticles.” They have the property that the
field strength tensor that describes them is self-dual: that is, it satisfies
the relationship

(8.85)

Here, ϵμνρσ is the totally anti-symmetric symbol in four dimensions
which is equal to 1 for all even permutations of 0, 1, 2, 3; −1 for odd
permutations; and 0 if two indices are repeated. In this exercise, we’ll
study properties of these self-dual field strength configurations.

(a) In electromagnetism, the self-dual field strength satisfies the
relationship

(8.86)

where the form of Fμν is given in Section 2.2.3. What
relationship between the electric and magnetic fields  and 
does this self-duality constraint impose?

(b) For a self-dual field strength, its action is

(8.87)

Show that the Lagrangian is a total derivative; that is, the action
only depends on properties of the instanton at the boundary of
spacetime. You should find that the action can be arranged into
the form

(8.88)



Everything to the right of the partial derivative ∂μ is called the
Chern–Simons current.

8.4 Wilson Lines. For a gauge theory like SU(3) color, as one moves
around in color space even the notion of the identity matrix changes.
To compare identity matrices at different spacetime points, we need to
parallel transport the identity matrix from the initial point to the final
point. On a linear manifold, parallel transport of the identity, 1, just
means that the derivative of 1 is 0:

(8.89)

That is, on a linear manifold, the identity is the same everywhere. On
a non-linear manifold, we need to use the covariant derivative to
parallel transport the identity. This produces the differential equation

(8.90)

The parallel transport of the identity W(x, y) is called a Wilson line
and its arguments x, y are the final (x) and initial (y) points of the
parallel transport. In this exercise, we will study properties of Wilson
lines in electromagnetism because the interpretation is a bit simpler
than in QCD. In electromagnetism, we don’t need the Lie algebra
matrix, so the Wilson line equation reduces to

(8.91)

where Aμ is the vector potential. The derivative ∂μ is taken with
respect to x and the vector potential Aμ is a function of final position
x.

(a) Show that the Wilson line can be written as

(8.92)

where dsμ is the four-vector infinitesimal path length along the
parallel transport from y to x.



(b) Under a gauge transformation of the vector potential Aμ, how
does the Wilson line transform?

(c) A Wilson loop is a Wilson line whose initial and final positions
are identical and so it is exclusively defined by the path P of the
loop:

(8.93)

The exponential factor can be expanded out in temporal and
spatial parts:

(8.94)

Assuming that the electric field is 0 so that A0 = 0 and  is time-
independent, show that the Wilson loop is

(8.95)

where  is the magnetic field and  is a differential area
element on a surface bounded by the path P.

Hint: You’ll need to use Stokes’s theorem and the
relationships between the electric and magnetic fields and the
vector potential from Section 2.2.3.

8.5 su(2) Lie Algebra. In Chapter 3, we introduced the Lie algebra that
defines the group SU(2) to satisfy the commutation relations

(8.96)

Here, the σi are the Pauli spin matrices, with

(8.97)



and the structure constants are ϵijk, the totally anti-symmetric object.
The structure constants can be expressed in matrix form and satisfy
the Lie algebra themselves. While this is true for any Lie algebra, in
this exercise we will demonstrate it for su(2).

(a) Let’s denote the totally anti-symmetric structure constants as
three matrices: iϵ1jk, iϵ2jk, and iϵ3jk. Note that we’ve multiplied by
a factor of the imaginary number i, and j and k denote the row
and column of the matrices, respectively. For compactness, let’s
express the matrices as T1 = iϵ1jk, T2 = iϵ2jk, and T3 = iϵ3jk. Write,
in standard matrix form, these three matrices. Are they
Hermitian? What other properties do they have?

(b) Now, with these three matrices Ta, compute their commutation
relations. You should find that they satisfy a Lie algebra:

(8.98)

What are the structure constants fabc of this Lie algebra? How
does it compare to the su(2) Lie algebra?

(c) Now, calculate the Killing form of these matrices. That is, take
the product of two matrices and then take the trace. You should
find

(8.99)

8.6 Casimir Invariant. The Casimir is an object that commutes with every
element of the Lie algebra. As discussed in Chapter 3, the Casimir is
therefore invariant: no group action can change its value. The Casimir
thus quantifies intrinsic properties of the particle such as its spin or
total color. In this exercise, we will calculate the Casimir for the
fundamental representation of SU(3), which is a measure of the total
color of a quark.

(a) For a Lie algebra with basis matrices Ta and a commutation
relation

(8.100)



show that the sum of squares of the matrices commutes with all
elements of the Lie algebra:

(8.101)

Here,

(8.102)

for a Lie algebra with m basis matrices. You can assume that the
structure constants fabc are completely anti-symmetric: they are
identical for even permutations of a, b, c, opposite for odd
permutations, and 0 if any of a, b, or c are the same.

(b) For the fundamental representation of SU(N), the Lie algebra
consists of N2 − 1 matrices of size N × N. We also typically
normalize the Lie algebra according to the Killing form as

(8.103)

Using this information, show that the Casimir for the
fundamental representation of SU(N), which we denote as CF, is

(8.104)

Because the Casimir commutes with everything, it must be
proportional to the identity matrix, which we typically do not
write explicitly.

(c) The fundamental representation of SU(2) has spin 1/2. In
Chapter 3 we said that the Casimir for spin 1/2 is

(8.105)

Does the formula of Eq. 8.104 get this value right?
(d) Quarks carry color in the fundamental representation of SU(3).



What is the value of CF for quarks?

(e) Using the Gell-Mann matrices from Eq. 8.13, explicitly calculate
the Casimir by squaring and summing matrices. Show that the
result agrees with the formula of Eq. 8.104.

8.7 Adjoint Representation of SU(3). The adjoint representation of a Lie
algebra is the representation in which the size of the basis matrices is
equal to the number of basis matrices. For SU(N), the Lie algebra is
N2 − 1 dimensional and the adjoint representation consists of matrices
of size (N2 − 1) × (N2 − 1). For color SU(3), the adjoint representation
is therefore eight-dimensional. This is exactly the number of gluons in
QCD, so gluons transform in the adjoint representation of SU(3)
color. In this exercise, we will calculate the Casimir of the adjoint
representation of SU(N).

(a) For matrices  in the adjoint representation of SU(N), we
typically normalize them according to the Killing form as

(8.106)

Using this and the fact that there are N2 − 1 matrices of size (N2

− 1) × (N2 − 1) in the adjoint representation, show that the
Casimir of the adjoint CA is

(8.107)

(b) Matrices in the adjoint representation can be represented by the
structure constants of the Lie algebra. This was explored in
Exercise 8.5 above. From the commutation relations

(8.108)

show that the structure constants can be solved for, and one finds

(8.109)

Here, the matrices Ta are in the fundamental representation.



Hint: Multiply by another element of the Lie algebra Td on
both sides of the commutation relation and use the Killing form.

(c) Using the Gell-Mann matrices in Eq. 8.13, calculate the structure
constants f abc for the Lie algebra su(3).

8.8 Running Couplings of QED and QCD. In Section 8.3.4, we
introduced the running couplings α(Q), the running fine structure
constant, and αs (Q), the running strong coupling constant. For the
fine structure constant, the running coupling (using the one-loop β-
function) is

(8.110)

while the strong coupling constant is

(8.111)

Because of the form of the denominator of these expressions, there
exists an energy at which the running couplings blow up,
corresponding to the Landau pole discussed in Section 8.3.5.

(a) Using the value of the fine structure constant at the electron mass
me, α(me) = 1/137, estimate the energy in GeV at which the
Landau pole occurs. Provide an estimate of this energy in terms
of the total visible energy in the universe.

(b) The value of the fine structure constant increases as energy
increases, while the strong coupling decreases with energy.
Therefore, there exists an energy Qeq at which α(Qeq) = αs (Qeq).
What is this energy, in GeV? Use the value of the strong
coupling at the Z boson mass mZ

(8.112)

where mZ = 91.18 GeV, and nf = 6. Long before this energy



scale, quantum electrodynamics is subsumed into the unified
electroweak theory, so this analysis is a bit unreasonable. We’ll
introduce the electroweak theory in Chapter 11.

(c) The β-function for the fine structure constant in Eq. 8.69
assumes that the electron is the only electrically charged particle
in the universe. The Standard Model, however, has six
electrically charged quarks and three electrically charged leptons
and so we should include the effects of all of these particles. Just
as with the calculation of the R ratio in Example 6.2, we also
have to include a factor of 3 for each quark to account for their
color. Doing this, the β-function for the fine structure constant in
the Standard Model is

(8.113)

where Qi is the electric charge of a fermion in units of the
elementary charge e and the sum ranges over all charged
fermions i of the Standard Model with mass less than the energy
scale Q. The modification of our analogy in Section 8.3.4 of
vacuum polarization is that there can be particle–anti-particle
pairs of any charged fermions of the Standard Model that
surround the electron.

Above the top quark mass, what is the squared sum of the
electric charges of all of the fermions of the Standard Model?
What is the β-function now? Where is the Landau pole for α, in
GeV?

(d) Figure 8.5 shows a measurement of the value of the fine
structure constant α from the L3 experiment at LEP. The value of
α is extracted from the measured cross section for the Bhabha
scattering process e+ e− → e+ e− at a few values of −t = −Q2 > 0.
The kink in the prediction of the running coupling around −Q2 =
10 GeV2 corresponds to the bottom quark now contributing to
the β-function (10 GeV ≃ 2mb).

How does the slope of the predicted running fine structure
constant in Fig. 8.5 above the location of the bottom quark



compare to the β-function in Eq. 8.113? What would the value of
α(Q) at Q ≃ 55 GeV be if you only accounted for the electron in
its running? How does this compare to the data?

Fig. 8.5 Plot of measured values of the fine structure constant from the cross section for Bhabha
scattering at the L3 experiment. From P. Achard et al. [L3 Collaboration], “Measurement of the
running of the electromagnetic coupling at large momentum-transfer at LEP,” Phys. Lett. B 623, 26
(2005) [arXiv:hep-ex/0507078].

8.9 Research Problem. Can we ever hope to solve QCD completely and
diagonalize its Hamiltonian? What is the best path forward for doing
that?

1 S. R. Coleman and J. Mandula, “All possible symmetries of the S matrix,” Phys. Rev. 159, 1251
(1967). It was later realized that this could be extended slightly by introduction of a new
spacetime symmetry called supersymmetry. See R. Haag, J. T. Lopuszanski and M. Sohnius,
“All possible generators of supersymmetries of the S-matrix,” Nucl. Phys. B 88, 257 (1975).

2 Minsk and Johannesburg have almost identical longitudes, and the figure accurately represents
their latitudes.

3 C. N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance,”



Phys. Rev. 96, 191 (1954).
4 If you are interested in the mathematical aspects of this section, they go under the name of

“fiber bundles.” A good book written for physicists that discusses this and much more of the
relation of mathematics to physics is M. Nakahara, Geometry, Topology and Physics, Taylor &
Francis (2003).

5 A. H. Compton, “A quantum theory of the scattering of X-rays by light elements,” Phys. Rev.
21, 483 (1923).

6 H. D. Politzer, “Reliable perturbative results for strong interactions?,” Phys. Rev. Lett. 30, 1346
(1973); D. J. Gross and F. Wilczek, “Ultraviolet behavior of nonabelian gauge theories,” Phys.
Rev. Lett. 30, 1343 (1973). See also Box 8.1 for historical context of this result.

7 G. ’t Hooft, “Renormalizable Lagrangians for massive Yang–Mills fields,” Nucl. Phys. B 35,
167 (1971).

8 G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B 72, 461 (1974).
9 G. ’t Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle,”
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10 G. ’t Hooft and M. J. G. Veltman, “One loop divergencies in the theory of gravitation,” Ann.
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11 L. D. Landau, “On the quantum theory of fields,” in Niels Bohr and the Development of
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12 K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445 (1974).
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Quantum Chromodynamics, World Scientific (2006); C. Gattringer and C. B. Lang, “Quantum
chromodynamics on the lattice,” Lect. Notes Phys. 788, 1 (2010); Lellouch, L. et al. (eds),
Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance
Computing, Lecture notes of the Les Houches Summer School, August 2009, Vol. 93, Oxford
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9

Parton Evolution and Jets

Within QCD there is a secret. Of course QCD is Lorentz invariant as it
describes the relativistic dynamics and interactions of quarks and gluons. Of
course QCD is unitary and probability-conserving as its Lagrangian and
Hamiltonian are Hermitian. Of course QCD is gauge invariant because color
charge is conserved and the gluon only has two propagating degrees of
freedom. These properties were essentially axioms that we used to construct
the QCD Lagrangian. A consequence of them, however, is that QCD is
approximately scale invariant: systems governed by the QCD Lagrangian
look nearly unchanged as you zoom in to shorter and shorter distances.

We’ve seen glimpses of scale invariance before. Bjorken scaling is the
phenomenon in which the structure of quarks appears approximately the
same with any photon energy or wavelength probe. In a detector, jets appear
to produce particles at every angular scale, down to the resolution of the
experiment. Only now are we in the position to understand why these
phenomena exist and how their approximate scale invariance is a
consequence of asymptotic freedom. At high energies, the strong coupling αs
runs with energy scale or wavelength, but its running is only logarithmic with
energy and so is rather slow. So, if the strong coupling at high energies is
approximately constant, particles will be produced at nearly the same rate
regardless of the energy or distance scale at which we are observing.

In this chapter, we make this consequence of the scale invariance of QCD
precise and define what exactly that means. This enables us to
straightforwardly derive equations which govern the energy dependence of
parton distribution functions. This therefore predicts the phenomenon of
Bjorken scaling directly from QCD, but also explains its violation
consistently. Jets are a consequence of scale invariance through an arbitrary
number of emitted particles over all distance scales. We are able to explicitly
sum over any number of particles emitted in a jet, which is also how we



compute exclusive cross sections accurately.



9.1 Scale Transformations
We didn’t discuss scale transformations and scale invariance in our general
analysis of groups in Chapter 3, so let’s fix that here. Before studying QCD,
let’s first consider a much simpler system: the action that describes a
massless scalar field:

(9.1)

This action has many features: it is Lorentz invariant, but it is also invariant
under scale transformations. A scale transformation, or dilation, is an
operation that rescales positions by a factor λ:

(9.2)

Let’s see what this transformation does to the action of Eq. 9.1. We will need
to determine how the integration measure d4 x, the derivative ∂μ, and the field
ϕ transform under a dilation.

Let’s first consider d4 x. Note that

(9.3)

and under a dilation, each individual spacetime coordinate t, x, y, and z is
scaled by λ. That is,

(9.4)

Now, on to the derivative. The derivative four-vector ∂μ in components is

(9.5)

and again, each spacetime coordinate t, x, y, and z is scaled by λ. For
example,



(9.6)

and similarly for all other derivatives. Therefore,  under a dilation.
What about the field, ϕ(x)? The transformation under dilation can be

derived more rigorously within quantum field theory, but here we will just
work to justify it. An action S is just the time integral of a Lagrangian, and
therefore has dimensions of

(9.7)

Because we set ħ = 1 in natural units, the action is dimensionless. We can
determine the dimensions of the scalar field ϕ from this requirement and
identifying the dimensions of the measure and derivatives. A differential
length element dx in natural units has dimensions of inverse energy, while the
derivative ∂μ has units of energy as quantum mechanically it corresponds to
the momentum operator. Therefore, for the action to be dimensionless in
natural units, the field ϕ(x) must have dimensions of energy. That is, [ϕ] =
[energy].

We define the scaling of ϕ with λ to be the same as that of the derivative
∂μ, as they have the same units. Then,  With this scaling we can then
determine how the action scales with λ. Plugging in all scalings that we have
identified, under a dilation the action transforms to

(9.8)

That is, the action is invariant under dilation. Because the action is invariant
under this continuous transformation, there is a conservation law, by
Noether’s theorem.1 The action is sufficient to describe everything about a
classical or quantum system, and such a system with an action that is
invariant under dilations is called scale invariant.

Note that scale transformations are not Lorentz transformations. These
dilations can be implemented on the spacetime four-vector x by a matrix Λ:

(9.9)



where λ > 0 is on the diagonal, but all other entries are 0. A Lorentz
transformation implemented by a matrix Λ satisfies

(9.10)

where η is the spacetime metric matrix. Testing this with the dilation matrix,
Eq. 9.9, we find

(9.11)

for arbitrary λ > 0. Therefore, in general dilations are not Lorentz
transformations.

This is interesting, but is it trivial? Are all relativistic actions scale
invariant? The answer is indeed no, because a dilation is not a Lorentz
transformation. Let’s consider adding a mass to the scalar field. Its action is
then

(9.12)

This action is still Lorentz invariant because the scalar field ϕ is not affected
by a Lorentz transformation. Now, let’s apply this dilation to this action. We
already identified the kinetic term of the action to be scale invariant, so we
only need to study the mass term. Under a dilation, its scaling is

(9.13)

Importantly, the mass m is just a number and so is not affected by a dilation.
This demonstrates that the theory with a mass is not scale invariant. Again,
this isn’t a problem, per se, because dilations are not Lorentz transformations.

The physical interpretation of this lack of scale invariance with a mass is
related to the scalar field’s intrinsic wavelength. For a massless scalar, the



only relevant distance scale is its de Broglie wavelength λdB, where

(9.14)

for some momentum  and we have inserted explicit factors of ħ. If the
scalar is massless, its magnitude of momentum can be arbitrarily large or
small; there is no intrinsic momentum or energy scale. Correspondingly,
there is no intrinsic length scale because the de Broglie wavelength can in
principle be any length from 0 (high energy) to infinite (low energy). A
dilation changes the size of the de Broglie wavelength of the scalar, but it
always transforms the massless scalar to have a de Broglie wavelength that is
a physical value.

By contrast, if the scalar has a mass m, there are now two relevant distance
scales. There is of course the de Broglie wavelength, but we can also Lorentz
boost to the rest frame of the scalar in which the relevant distance scale is the
Compton wavelength λC:

(9.15)

For a massive particle, the Compton wavelength is the absolute largest
wavelength that it can have; a massive particle has a minimum energy of its
mass. Therefore, under a dilation, we can potentially rescale the wavelength
of a massive particle to larger than its Compton wavelength. As this is
unphysical, dilations do not in general map physical states of massive
particles to other physical states, and therefore such a system is not scale
invariant.

One potential way out would seem to be to just restrict to those dilations
that mapped physical states to physical states for massive particles. This is
possible, but by doing this the action of dilations no longer forms a group. As
dilations are just implemented by multiplication by a positive real number,
they have an identity (multiplication by 1) and are associative because
number multiplication is associative. To form a group, dilations must also be
closed. Multiplication by λ1 > 0 and λ2 > 0 is equivalent to multiplication by
λ3 > 0, where



(9.16)

For massive particles, we could just agree to only dilate by an amount 0 < λ ≤
1, which would never have the issue of enlarging the Compton wavelength.
However, such a restriction then leads to dilations without an inverse, and so
dilations do not form a group. For dilations to be a group, if a multiplication
by λ > 0 is in the group, then so too must λ−1 > 0. This enforces dilations to
be a rescaling by any positive number. In the example below, we explicitly
construct the dilation operator that implements scale transformations. You’ll
study this operator and the group of dilations further in Exercise 9.1.

Example 9.1 What is the dilation operator D̂ whose action implements scale
transformations?

Solution

A dilation rescales the position four-vector as

(9.17)

for λ > 0. The dilation operator D̂ is a Hermitian operator which implements
an infinitesimal rescaling. In general, we can express λ = eϵ, for any real
number ϵ. Therefore, a rescaling can be expressed as

(9.18)

On the right, we have inserted the action of the dilation operator D̂ into the
exponent. In this way, D̂ is an element of the Lie algebra of the dilation or
scale transformation group. Note the factor of i in the exponent on the right:
we want a unitary representation of the scale transformation group.

Assuming that ϵ ≪ 1, we can Taylor expand the exponential as

(9.19)

which implies that xμ is an eigenvector of D̂:

(9.20)



A first-order differential operator that accomplishes this is

(9.21)

Note here that μ is an internal index and summed over, so we can represent it
by any character. The action of this dilation operator on a spacetime position
four-vector xμ is

(9.22)

The object  is the Kronecker-δ for four spacetime dimensions;  only
if μ = ν and is 0 otherwise.

9.1.1 Scale Invariance of QCD
With this insight about the action of dilations, let’s now study what happens
in QCD. The QCD action with massless quarks is

(9.23)

as introduced in Chapter 8. Recall that the field strength tensor  in terms
of the gluon field  is

(9.24)

Using the same principles as we did in analyzing the action of a scalar field ϕ,
the gluon field  has dimensions of energy, and so will scale like λ−1 under
a dilation. Similarly, the covariant derivative

(9.25)

will also scale like λ−1. This then implies that the quark field ψ has
dimensions of

(9.26)

Then, under a dilation, the quark field ψ scales like λ−3/2. Note that the γ



matrices and the structure constants fabc are just numbers, and so do not
transform under a dilation.

With these scalings, the QCD action is scale invariant. Performing a
dilation by an amount λ > 0, the action transforms as

(9.27)

Therefore, we expect that QCD is not only Lorentz invariant and gauge
invariant, but also scale invariant. We have already seen how Lorentz and
gauge invariance highly restrict interactions of particles. We’ll discuss what
this scale invariance implies shortly.

First, our argument for scale invariance in QCD was a little fast. In this
argument, we assumed that the coupling g that appears in the field strength or
the covariant derivative is just a number and so is itself scale invariant. That
is, we assumed that the coupling g is the same regardless of the wavelength
or energy with which we probe it. However, we know this isn’t true. The
coupling g, or the strong coupling αs, changes with energy according to the β-
function of QCD. With αs = g2/(4π) the energy dependence of the strong
coupling is

(9.28)

Therefore, the non-zero β-function breaks the scale invariance of QCD. This
is entirely a quantum phenomenon; that is, the β-function would be 0 if ħ = 0.
Even in a system like QCD which is not strictly scale invariant, the manner in
which scale invariance is violated is highly restricted. The equation that
governs the violation of scale invariance in quantum field theory is called the
Callan–Symanzik equation.2

Nevertheless, there is a sense in which the violation of scale invariance is
weak in QCD: the value of the β-function is relatively small at high energies,
so we can consider QCD as a scale-invariant theory, with small corrections
that violate scale invariance. From Section 8.3.4, the β-function for αs in
QCD is



(9.29)

As a fraction of the value of αs, the β-function is

(9.30)

which decreases as Q increases. Even at the Z boson mass Q = mZ where αs =
0.118, the β-function is about 14% the value of αs. At an energy of Q = 1
TeV, which is regularly probed by proton collisions at the LHC, the β-
function is less than 10% of the value of αs. So, to a precision of about 10%,
we can say that QCD is scale invariant in the collisions at the LHC.

9.1.2 Fractals and Scale Invariance
A powerful way to think about scale transformations and invariance for the
rest of this chapter is the following. Imagine we probe the system with some
wavelength λ1, which can be visualized as viewing the system with some
pixel size set by λ1 :

Scale invariance says that if we probe the system at another wavelength λ2 <
λ1, then the physics is identical:



We can freely “zoom in” or “zoom out” of our system and we see the same
physical phenomena. For example, if probing at a wavelength λ1 we observe
three particles, then by probing at λ2 < λ1, we would also see three particles.
This implies that a scale-invariant theory produces an infinite number of
particles, because we can zoom in arbitrarily and still see the same number of
particles produced at every distance scale. Another way to say this is that a
scale-invariant system is one which exhibits structure on all scales.

Mathematical objects that exhibit structure at all scales were studied and
defined in detail by Benoit Mandelbrot in the 1960s and 1970s. He called
them fractals, and there are a huge number of fractal systems in Nature such
as Romanesco broccoli, lightning, and tree branches. His seminal paper on
fractals is titled “How long is the coast of Britain.”3

Figure 9.1 shows an example of a fractal called the Mandelbrot set. The
Mandelbrot set is defined as the set of all complex numbers c for which the
recursive formula

(9.31)

with z0 = 0, is bounded as n → ∞. The left panel of Fig. 9.1 shows the whole
Mandelbrot set in black, which forms an intricate cardioid shape. One can
zoom in anywhere on the boundary of the Mandelbrot set and see finer and
finer structure at arbitrarily small scale, as illustrated moving right in the
figure. Recursive equations, like that defining the Mandelbrot set, often give
rise to fractal structure, and we’ll see a similar recursive structure in studying
the energy dependence of parton distribution functions in the following
section.



Fig. 9.1 A visualization of the Mandelbrot set fractal. On the left is the whole Mandelbrot set in black,
and as one zooms in to the boundary of the Mandelbrot set, arbitrarily detailed structure is resolved.



9.2 Parton Evolution
In our discussion of deeply inelastic scattering in Chapter 7, the measurement
of the form factor F2 (x) (or parton distribution function fq (x)) was used to
argue that quarks were non-interacting point particles. If the parton
distributions are independent of probing energy scale Q2, then quarks appear
the same regardless of the resolution at which they are probed, a phenomon
called Bjorken scaling. But is this actually true? As discussed in Section
7.2.1, even if quarks are point particles, Bjorken scaling can be violated if
quarks have non-trivial interactions with one another. Now, with the theory
of QCD, we know that they do interact with one another, through the gluon.
At best, Bjorken scaling is an approximate feature of QCD. So, can we use
QCD to determine the Q2 dependence of the parton distribution functions and
understand the limit in which Bjorken scaling is observed?

9.2.1 Collinear Divergences in QCD
To motivate this discussion, let’s remind ourselves about the cross section we
calculated for the process e+ e− → qqg. In Section 7.3.4, we found

(9.32)

The xi variables are defined from the final-state momenta pi as

(9.33)

for i = q, q, g, and Qtot is the total system momentum four-vector which in the
center-of-mass frame is Qtot = (Ecm, 0, 0, 0). Now, in the differential cross
section above, let’s take the limit in which the quark and gluon become
collinear. That is, we will expand in the limit where the angle between the
quark and gluon becomes small and we only keep the leading terms. The
physical picture we have is



where θ is called the splitting angle. Our goal will be to expand Eq. 9.32 in
the limit where θ ≪ 1. A nice way to express the result of this expansion is in
terms of the relative energy fraction of the collinear quark and gluon. We
denote the energy fraction of the quark as z, defined as

(9.34)

In the collinear limit, we can set  that is, when the quark and gluon
become collinear, then the anti-quark has energy  In this limit, the
energy fraction z becomes

(9.35)

Note also that the energy fraction of the gluon xg = 1 − z.
We also want to express the splitting angle θ between the quark and gluon

in terms of the three-body phase space variables xi. Note that

(9.36)

Similarly, we can re-express the dot product of the quark and gluon four-
vectors pq · pg with the total momentum Qtot as

(9.37)

Therefore, the cosine of the splitting angle θ is

(9.38)

In the collinear limit, we can Taylor expand 1 − cos θ = θ2 /2 + · · · at lowest
order, and so the splitting angle is



(9.39)

On the right, we have used that xg = 1 − xq in the collinear limit.
With these expressions for z and θ2, we will change variables in Eq. 9.32

from xq and  to z and θ2. We have

(9.40)

or that

(9.41)

The Jacobian of this change of variables is

(9.42)

Then, in the collinear limit of the quark and gluon the differential cross
section of the process e+ e− → qqg becomes

(9.43)

The parentheses that associate the q and g in the cross section denote that the
gluon is becoming collinear to the quark.

This form of the cross section tells us many things. First, the expression
diverges in the collinear limit when θ2 → 0, and in the low-energy or soft-
gluon limit when 1 − z → 0. This might be very disconcerting if we attempt
to interpret the cross section as a probability. Probabilities can’t be larger
than 1, so what is going on?

The answer is simply that we can’t interpret this cross section as a
probability. In the limit when the gluon becomes either collinear to the quark
or soft, the configuration of the final state is a degenerate quantum
mechanical system. All that our particle detectors measure is the energy and
momentum of the final-state particles. In the limit in which the gluon



becomes collinear to the quark, for example, we only observe the total energy
of the quark–gluon system, which is equivalent to a quark with no emitted
gluon. Similarly, if the gluon has zero energy, then the quark’s and anti-
quark’s energies are completely unaffected. There is no measurement
exclusively from energy and momentum that we can do to identify an exactly
collinear or zero-energy gluon.

Let’s visualize more concretely what’s going on in the case of collinear
gluon emission. We could have just a quark traveling along:

or a quark and one collinear gluon:

or two collinear gluons:

or three, or any number of collinear gluons emitted off of the quark. The
important point is that all of these configurations are degenerate: there is no
measurement that we can perform to distinguish them. Each configuration
produces a cross section that is divergent, but the interpretation of the
divergence is physical. Because we can’t distinguish these different final
states, a divergent cross section tells us that an arbitrary number of collinear
gluons can and in general will be emitted. Only by summing over all states
with any number of collinear gluon emissions, q, qg, qgg, qggg, ..., do we
find a finite result. This is a fundamental result in quantum field theory and is
known as the Kinoshita– Lee–Nauenberg (KLN) theorem.4 We’ll show
how to explicitly do this sum in a second.

Another feature of this collinear limit is the presence of a function of z that
governs the distribution of the quark’s energy fraction. This function is
universal: it is the same for any process in which a quark splits collinearly to
a gluon. The argument as to why such a function would be universal is the



following. In the limit in which a quark and gluon become collinear, every
other particle in the final state is relatively infinitely far away with respect to
the splitting angle θ. That is, the quark and gluon only see each other, and all
other particles in the final state only see the combined quark–gluon system
and can’t resolve the quark and gluon individually. As such, this function is
called the universal collinear splitting function Pqg←q (z):

(9.44)

With this observation that there are collinear divergences when gluons and
quarks get close, we can compute the energy dependence of the parton
distribution function, fq (x).

9.2.2 Energy Dependence of Parton Distributions
Let’s work to calculate the energy scale Q2 dependence of the parton
distribution function, fq (x). Our goal will be to derive a differential equation
in Q2 for fq (x). To do this, we imagine probing the proton at an energy scale
Q2 + δQ2 and then at a slightly lower scale Q2. Here, δQ2 is a small energy
scale that we will eventually take to 0. Using the analysis of the collinear
limit, we will ask what could have happened to the quark in changing the
resolution scale from Q2 + δQ2 to Q2, and taking δQ2 → 0 will produce the
desired differential equation. With the differential equation in hand, we will
then show what the Bjorken scaling limit is, and you’ll study how Bjorken
scaling is broken by a Taylor series of logarithms of Q2 in Exercise 9.5.

As discussed earlier, there is no such thing as a “bare” quark: all quarks are
associated with an arbitrary number of collinear gluons. The number of those
collinear gluons that we resolve depends on the energy or wavelength at
which we probe the quark. Therefore, the first thing that we need to do is to
rewrite the differential probability for a collinear gluon splitting off of a
quark in appropriate variables. This differential probability in terms of the
energy fraction z of the quark and the splitting angle θ2 of the gluon is

(9.45)



which we have just extracted from the collinear limit of the differential cross
section for the process e+ e− → qqg, Eq. 9.43. Our goal is to determine the Q2

dependence of the parton distribution fq (x), and so we want to write the
differential probability in a way that manifests these quantities. First, in fq (x),
x is the energy or momentum fraction of the quark, just like z in the
expression above. Q2, however, is not directly the splitting angle θ2, so we’ll
need to change variables to determine the collinear splitting probability
differential in energy fraction z and Q2.

Q2 is the squared invariant mass of the quark–gluon system. That is, for
quark and gluon four-momenta pq and pg, respectively,

(9.46)

In the collinear limit, 1 − cos θ → θ2 /2 and the quark and gluon energies Eq
and Eg can be written as a fraction of their sum total energy E:

(9.47)

Then, in the collinear limit,

(9.48)

where E is the total energy of the quark and the gluon. Making the change of
variables with the necessary Jacobian, the differential probability in terms of
z and Q2 is then

(9.49)

Now, let’s consider the parton distribution evaluated at the two scales Q2 +
δQ2 and Q2. If we look at the proton at scale Q2 + δQ2 and find a quark with
energy fraction x, the quark is described by the parton distribution function fq
(x, Q2 + δQ2). We now want to look at the proton at a slightly lower scale of
Q2. There are two possibilities for what can happen. First, nothing can
happen; we just see the parton distribution function at scale Q2 : fq (x, Q2).
Next, there could have been a collinear emission of a gluon at this lower scale



that decreased the energy fraction of the quark from some value z down to x.
The picture of this is

The probability for this to happen is

(9.50)

There are a few moving parts, so let’s consider them carefully. In the first line
of this equation, we have pulled out of the proton a quark with momentum
fraction z at a scale Q2, hence the factor fq (z, Q2). This quark then undergoes
a collinear splitting to a quark and a gluon, which is governed by the
differential probability from Eq. 9.49. The quark in this splitting takes a
relative energy fraction x′ in the splitting, corresponding to a fraction x = zx′
of the proton’s energy. Because this splitting occurred over the energy range
δQ2, we multiply by this differential amount. Finally, we integrate over z and
x′ because they are unmeasured quantities. On the third line, the factor of 1/z
is the Jacobian from integrating the δ-function.

Box 9.1 Historical Profile: Guido Altarelli

Guido Altarelli was an Italian physicist who earned his Ph.D. from La
Sapienza University in Rome in 1963, working with Raoul Gatto. He then
went on to work with Gatto’s group in Florence, of which his students and
young researchers were endearingly nicknamed gattini (gatto = cat and
gattini = kittens in Italian). After Florence, Altarelli held positions
throughout Europe and the US, including at Rockefeller University in
NewYork City, École Normale Superieure in Paris, and back at La
Sapienza. Altarelli’s work throughout his career spanned the breadth of



particle physics, including QCD evolution equations, weak decays of
hadrons,5 neutrino mixing,6 and more. A particular interest of his was the
precision extraction of the value of the strong coupling αs from
experimental data, and he was critical of many of the methods,
measurements, and theoretical calculations that are used in the official
value provided by the PDG.7 He was a long-term member of the CERN
Theory Division from the mid-1980s until his death in 2015.

Combining the terms at the scales Q2 + δQ2 and Q2 we have

(9.51)

Then, in the limit as δQ2 → 0, this turns into a differential equation:

(9.52)

This differential equation determines the energy dependence of the parton
distribution function. The running strong coupling, αs, is evaluated at the
scale Q. In this expression, we have only assumed that quarks emit gluons,
while a complete analysis requires considering three coupled equations that
describe quarks emitting gluons, gluons emitting gluons, and gluons splitting
to quarks. These parton evolution equations are among the most important
results in QCD and are called the DGLAP equations after its discoverers:
Yuri Dokshitzer, Vladimir Gribov, Lev Lipatov, Guido Altarelli, and Giorgio
Parisi.8

The predicted Q2 evolution of the parton distribution function from the
DGLAP equations can be compared to data. Figure 9.2 shows the cross
section differential in the exchange energy Q2 (the abscissa of the plot) and
quark momentum fraction x for deeply inelastic scattering that we calculated
in Eq. 7.32. The data on this plot come from the ZEUS and H1 experiments
at the HERA (Hadron–Electron Ring Accelerator) collider at Deutsches
Elektronen-Synchrotron (DESY) in Hamburg, Germany. The measured cross
sections at different values of x are multiplied by a power of 2 to separate the



curves. The predicted Q2 dependence is determined from the DGLAP
evolution equations and is shown by the solid curves on the plot. Extremely
good agreement between the data and prediction over nearly four decades in
both Q2 and x demonstrates that the structure of partons as probed at different
energy scales is indeed described by the DGLAP equations. For reference,
Bjorken scaling would predict no dependence on Q2, which would just be flat
line on this plot. These data also conclusively demonstrate violation of
Bjorken scaling, though the Q2 dependence is relatively weak.

Fig. 9.2 Plot of the cross section for deeply inelastic scattering differential in the exchanged energy Q2

and quark momentum fraction x. The data come from the H1 and ZEUS experiments and the predicted
Q2 dependence (solid lines) comes from applying the DGLAP evolution equations. Reprinted from
Nucl. Phys. Proc. Suppl. 191, C. Gwenlan [HERA Combined Structure Functions Working Group],
“Combined HERA Deep Inelastic Scattering Data and NLO QCD Fits,” 2 (2009), with permission from



Elsevier.

9.2.3 Physical Interpretation of the DGLAP Equations
The DGLAP evolution equations of the parton distribution function are a
prediction directly from the QCD Lagrangian that we constructed in Chapter
8. Therefore, they should subsume the prediction of Bjorken scaling. Indeed,
we can see how Bjorken scaling arises as a consequence of asymptotic
freedom and the high-energy limit of the DGLAP equations. Bjorken scaling
is the property that the quark constituents of the proton were both point
particles and non-interacting, and therefore the form factor F2 (x) or the
parton distribution fq (x) was independent of Q2. The QCD Lagrangian
assumes that quarks have no spatial extent, and therefore the derivation of the
DGLAP equations used point-particle quarks and gluons. The interactions of
quarks and gluons are controlled by the coupling αs : as αs → 0, the strength
of the interaction between quarks and gluons decreases. Indeed, from Eq.
9.52, if αs = 0, then the parton distribution is independent of Q2 :

(9.53)

It is not possible to just turn off interactions in QCD, but we can exploit
the energy dependence of the coupling, αs. The value of αs decreases with
increasing energy Q, which is the property of asymptotic freedom. The
leading behavior with energy of the running coupling evaluated at scale Q is

(9.54)

where Q0 is some reference energy scale and nf is the number of relevant
quarks. The strength of quark–gluon interaction is decreased by probing the
proton at higher and higher energies. Thus, the Bjorken scaling limit in QCD
is the high-energy limit: as Q → ∞, we have that

(9.55)



This is the reason why Bjorken scaling is observed in high-energy collisions
of electrons and protons. At high energies, the coupling αs is small, and so to
first approximation quarks are indeed free particles.

In Section 7.2.1, we discussed how interactions could break Bjorken
scaling while maintaining the point-particle property of quarks. The
resolution was that a point particle has no spatial extent, and so there must be
some nice scaling properties of the parton distributions. This is analogous to
the scale invariance of the electric potential of a charged point particle in
electromagnetism. Just assuming this scaling property, we showed that
Bjorken scaling (independence of Q) could be violated by an infinite Taylor
series of logarithms of Q. That is, we can in general express the parton
distribution as a Taylor series in log Q2 :

(9.56)

where Q0 is some reference scale and  are coefficients that depend on
energy fraction x and are evaluated at the scale Q0. This property is also a
consequence of the DGLAP equations. We can write the DGLAP equations
in a more suggestive form:

(9.57)

Inserting Eq. 9.56 into this expression, one finds a recursion relation between
the coefficients  and  for all n > 1. Because there is no
upper limit on n in this recursion relation, an infinite number of terms are
required, just as our general analysis predicted. As the DGLAP equations
sum an infinite number of log n Q2 terms, we say that the DGLAP equations
resum logarithms of Q2. We’ll explore the procedure of resummation and its
interpretation in another context in Section 9.3. Also, you’ll explicitly
construct the recursion relation between the  and 
coefficients in Exercise 9.5.

Connecting to the beginning of this chapter, the DGLAP equations
describe scale-invariant gluon emission, up to the effects of the running of αs.
It is straightforward to validate this directly from Eq. 9.52. First consider the



left side of the DGLAP equation. Under a dilation, the energy Q scales as

(9.58)

We will assume that the parton distribution function fq (x, Q2) scales simply,
to:

(9.59)

Here, we denote the scaling of fq (x, Q2) as λf. If this assumed dilation of fq (x,
Q2) is inconsistent, then the scaling of left- and right-hand sides of the
DGLAP equation will not agree. The left side of the quark DGLAP equation
therefore scales with λ as

(9.60)

On the right side of the DGLAP equation, there are no explicit scales
whatsoever: z and x are dimensionless energy fractions, and so do not scale
with λ under a dilation. The only thing that might transform, ignoring the
running of αs, is fq (z, Q2). Therefore, the right side of the DGLAP equation
scales with λ as

(9.61)

The left and right sides of the DGLAP equation therefore scale the same
under a dilation, and up to running coupling effects, DGLAP describes scale-
invariant gluon emission.

Figure 9.3 illustrates the interpretation of this scale-invariant particle
production from the DGLAP equations. At some initial scale Q2, we see
some number of quarks and gluons. We can zoom in to any one of the
particles and we will see similar particle production at a smaller value of Q2,
described by the same DGLAP equations. We can continue zooming in to see
more particle production always described by the DGLAP equations. If we



could zoom in indefinitely, we would see particle production and structure at
all scales and correspondingly the DGLAP equations would predict a fractal
structure of QCD at high energies. The running of αs and hadron masses
prohibit the possibility of zooming in ad infinitum, but nevertheless a fractal-
like structure of QCD is exhibited over a wide range of energy scales.

Fig. 9.3 An illustration of particle production over a range of energy or distance scales described by the
DGLAP equations. As we zoom in, we see self-similar particle production, just like the structure of a
fractal.



9.3 Jets
This fractal or self-similar feature of high-energy QCD has other
experimental consequences. Our topic in this section will be what is perhaps
the most shocking observation and prediction of QCD: collimated streams of
high-energy particles, called “jets.” We’ve seen jets before, especially in
understanding the process e+ e− → hadrons, but here we’ll work to
understand their features quantitatively.

The DGLAP equations say there is no such thing as a “bare” quark. A
quark is always associated with an arbitrary number of gluons that are
approximately collinear to the direction of the quark. Thus, in an experiment
where a quark is produced, as in e+ e− → qq events, that quark (or anti-quark)
will always be associated with an arbitrary number of collinear particles. This
collimated stream of particles is a jet: it is the manifestation of the
approximate scale invariance of QCD, in addition to the relative smallness of
αs at high energies.

In the late 1960s and early 1970s this prediction of jets produced in e+ e−

→ hadrons events was believed by only a few to possibly be a consequence
of the strong force.9 At the time, the strong interactions binding hadrons were
thought by many to just be strong; effectively, the coupling of the strong
force was thought to be very large. Such a large coupling would not produce
jets in experiment: one would instead observe a nearly spherical distribution
of particles emanating from the collision point. However, the discovery and
interpretation of Bjorken scaling and asymptotic freedom in QCD made jets a
robust prediction of high-energy QCD and one that could be compared to
data.

What we see most often in a high-energy e+ e− → hadrons event is
something like what is displayed in Fig. 9.4. This is an event display of e+ e−

collisions at a center-of-mass energy of about 91 GeV (i.e., at the Z boson
mass) from the OPAL (an Omni-Purpose Apparatus at LEP) experiment
located at LEP at CERN. This is a head-on view of the OPAL detector, with
the beams of electrons and positrons going into and out of the page. Two
back-to-back, high-energy, collimated streams of particles are clearly visible;
these are the jets. Note that because the e+ e− collision occurs in the center-



of-mass frame, there must be at least two jets in the final state, by momentum
conservation.
gur

Fig. 9.4 Event display of the process e+ e− → two jets from the OPAL experiment at LEP. The two jets
are visible as collimated tracks in the center of the display and as high-energy deposits in the
calorimetry. Credit: OPAL experiment © CERN.

As collimated streams of particles, jets invoke water jets, and one potential
source of the etymology of “jet” in particle physics is from the Jet d’Eau, a
spectacular 140-meter-high water fountain that sits in Lake Geneva. To my
knowledge, the first use of the term “jet” was by George Rochester and
Clifford Butler in their analysis of cosmic ray showers in the upper
atmosphere that resulted in the discovery of the kaon in 1953.10 By the way,
the Jet d’Eau dates from 1886, long before there was any understanding of



jets, let alone special relativity and quantum mechanics!

9.3.1 All-Orders Predictions: Thrust
In the remainder of this chapter, we’ll work to understand a prediction of jets
and their structure, which will illustrate more properties of (approximate)
scale invariance in QCD. In Example 7.2 of Chapter 7, we calculated the
order-αs prediction for the differential cross section of thrust τ. This result in
Eq. 7.141 followed from the calculation of the inclusive cross section to the
process e+ e− → qqg. However, in that differential cross section, we noted
that the limit when τ → 1 is divergent: this corresponds to the emitted gluon
being collinear with either the quark or the anti-quark, or the gluon having
low energy. In any of these limits, the matrix element diverges, producing a
differential cross section which correspondingly diverges. This is not
physical behavior and our prediction breaks down in the limit where τ → 1.

Armed with our new understanding of scale invariance of QCD, we can fix
this divergence by appropriately including the emission of an arbitrary
number of collinear or low-energy gluons in the measurement of thrust. Thus,
this analysis will focus on the thrust observable τ in the limit when τ → 1.
Formally, we will impose the requirement that 1 − τ is parametrically smaller
than 1:

(9.62)

This requirement restricts the possible regions of phase space in which final-
state particles can live and still contribute to τ. That is, by restricting 1 − τ ≪
1, we will be calculating an exclusive differential cross section. The value of
1 − τ corresponds to a new energy scale in the final state that is distinct from
the center-of-mass collision energy. We need to account for this new energy
scale appropriately, and doing so will require consideration of the emission of
an arbitrary number of gluons.

So, let’s make a prediction of the thrust observable τ in the limit when τ →
1. We found earlier that τ → 1 corresponds to the limit in which the gluon in
e+ e− → qqg events become collinear, for example. This is a singular limit, in
the sense that the matrix element describing this configuration diverges like
1/θ2, where θ is the splitting angle of the gluon to the closer of the quark or
anti-quark:



Earlier in this chapter, we argued that this singular limit means that an
arbitrary number of collinear gluons will be emitted from the quark and anti-
quark. How do these numerous gluons affect the differential cross section of
thrust?

In Section 9.2.1, we showed that the differential probability distribution Pq
(z, θ2) for emission of a gluon at angle θ and energy fraction 1 − z off of a
quark is

(9.63)

which holds in the collinear limit when θ → 0. The thrust observable τ was
defined as a function of the three-body phase space variables xi in Chapter 7
as

(9.64)

If the quark and gluon have energy fractions xq and xg, respectively, then in
the collinear limit, by momentum conservation, the anti-quark has the largest
energy fraction xq. In the limit when the gluon becomes collinear to the
quark, we showed earlier in Eq. 9.41 that

(9.65)

As a further simplification, we will work in the soft and collinear limit in
which the gluon has both low energy and is collinear to the quark. This
corresponds to additionally taking the z → 1 limit, and so the differential
probability distribution becomes

(9.66)



and the thrust is

(9.67)

While we only considered the collinear emission of a gluon off of the
quark, of course it could also have been emitted off of the anti-quark. The
probability for emission of the gluon off of the anti-quark Pq (z, θ2) is exactly
the same as that for the quark:

(9.68)

Because the gluon could have been emitted collinearly off of either the quark
or the anti-quark, the total probability for a soft and collinear gluon in the
final state, Psoft&coll (z, θ2), is just the sum of these probabilities:

(9.69)

We will use this differential probability for gluon emission in the calculations
that follow.

There is a beautiful way to visualize this system and calculate the thrust in
the soft and collinear limit. The probability Psoft&coll (z, θ2) governs the
splitting probability of an arbitrary number of soft and collinear gluons. Note
that it is a flat distribution in log 1/(1 − z) and log 1/θ2 :

(9.70)

Therefore, we can imagine gluons uniformly populating the (log 1/(1 − z),
log 1/θ2) plane, as illustrated in Fig. 9.5. This plane is called a Lund
diagram,11 and each dot corresponds to an emitted gluon with some energy
fraction 1 − z emitted at an angle θ. To orient you in this plane, the origin
corresponds to large-angle (θ ∼ 1) and high-energy (z ∼ 0) gluon emission.
Off at infinity are the various divergent limits of the emission probability, and
depending on how you approach infinity you are sensitive to a different limit.
Moving vertically in this plane corresponds to the soft (low-energy) gluon



limit (z → 1); horizontally is the collinear-gluon limit (θ → 0), and
diagonally is some soft and collinear limit. In the following example, we use
this picture of gluon emissions in the Lund plane to calculate the differential
cross section for thrust in the exclusive limit when τ → 1.

Fig. 9.5 A semi-infinite Lund diagram that illustrates soft and collinear gluon emissions uniformly
populating phase space. The limit in which gluons have zero energy is moving vertically to infinity and
exactly collinear gluons are found moving horizontally to infinity.

Example 9.2 What is the differential cross section for thrust τ in the limit in
which τ → 1? To illustrate the physics, we’ll just work in the soft and
collinear limit as described by a uniform distribution of emissions in the
Lund plane. We’ll also ignore the running of αs.

Solution

From Eq. 9.67, the expression for thrust in the soft and collinear limit
corresponds to a straight line on a Lund plane:

(9.71)

We can draw this line on the Lund diagram:



On this diagram, we’ve denoted the x- and y-intercepts; that is, the value of
log 1/θ2 or log 1/(1 − z) when the other is 0.

Importantly, note that emissions that land above this line contribute a tiny
(negligible) value to thrust, while emissions below the line will increase the
value of 1 − τ beyond its measured value. Gluon emissions that land below
the line would have a larger energy fraction 1 − z or splitting angle θ2 than
that allowed by the measured value of τ. Because gluon emissions are
uniformly distributed in this logarithmic space, they are exponentially far
apart in “real” space. Therefore, in the soft and collinear limit, emissions
above this line contribute an exponentially small amount to the value of
thrust. To good approximation, they are indeed negligible. From this picture,
let’s calculate the cumulative distribution of thrust; i.e., we will calculate the
probability that the thrust is no larger than the measured value of 4(1 − τ).
We will call this cumulative probability distribution Σ(τ).

Recall that emissions in the Lund diagram are uniformly distributed, but
for the measured value of thrust, we must forbid emissions that land below
the line:



To determine the probability that no gluon emissions land in the triangle, we
imagine breaking it up into tiny pieces and forbidding any emission in each
of the pieces. The picture of this is:

The probability that no gluon is emitted into one of these squares is set by the
area of a square:

(9.72)

For simplicity, let’s take the area of each square to be identical. If there are N
squares, then the probability that no gluon is emitted into one of the squares
is

(9.73)

To find the total probability that no gluons land anywhere in the triangle, we
need to multiply the probabilities of each square together:12



(9.74)

As the number of squares N → ∞, this probability transmogrifies into an
exponential:

(9.75)

The area of the forbidden triangle is just

(9.76)

and so the probability of no gluon in the triangle or the cumulative
probability of τ in the soft and collinear limits is

(9.77)

This result is remarkable, and this exponential factor is called the Sudakov
form factor.13 It is responsible for exponentially suppressing the soft and
collinear region of phase space (when τ → 1), which is physical behavior.
The Sudakov form factor says that it becomes exponentially unlikely to
measure final states with τ very close to 1. If τ is very close to 1, then there
must be no gluon emissions at energy scales above that set by the measured
value of thrust. In an approximately scale-invariant theory like QCD, we
expect emissions at all scales, and so suppressing them over a wide range of
energies by restricting τ → 1 is extremely unlikely.

To calculate the probability distribution for τ, P(τ), we just take the
derivative of the cumulative distribution Σ(τ):

(9.78)

Divergences in Feynman diagrams at each order in αs are turned into



exponential suppressions when all orders are included!

Note that in this Sudakov factor we have summed a series on αs to all
powers in αs. This procedure is called resummation, and P(τ) defined in Eq.
9.78 is called the resummed differential cross section for thrust, τ. We denote
this by

(9.79)

The existence of exponential suppression via a Sudakov form factor is a
general feature of exclusive cross sections. This also demonstrates why we
said earlier that exclusive cross sections are not well approximated by
individual Feynman diagram calculations. Because of multiple scales in the
process, exclusive cross sections in general are functions of logarithms of
ratios of those scales. These logarithms can become large or even divergent
in some phase space regions and invalidate the assumption that corrections to
the cross section are controlled by the small value of the coupling. In many
(or perhaps most) cases of exclusive cross sections, actually calculating the
Sudakov form factor is an extremely non-trivial procedure. This is why, in
Section 6.1.5, we stated that exclusive cross sections were much more
challenging to work with than inclusive cross sections.

The exponential Sudakov form factor is a manifestation of a semi-classical
object in particle physics and quantum field theory. The exponent of the
Sudakov form factor is quantum mechanical: to calculate it, we evaluated
Feynman diagrams. However, to construct the exponential form, we summed
classical probabilities represented by squared matrix elements and cross
sections. In its form, this is similar to the WKB approximation for
approximating tunneling rates in quantum mechanics.

Resummation is an aspect of a more general procedure in quantum field
theory called renormalization. The history of renormalization is long and
often fraught with misunderstanding. The opponents of renormalization (who
included Feynman) thought of it as a terribly ill-defined procedure for
“sweep[ing] the infinities under the rug.”14 This is unfortunately a wrong
characterization of renormalization. Renormalization is a systematic and
well-defined procedure for accounting for and eliminating infinities in a



quantum field theory.

The property of renormalizability of a theory is vital for predictivity within
that theory. Both QED and QCD are renormalizable theories, and a
consequence of renormalizability is that their couplings run and depend on
the energy scale at which the theory is probed. Gerardus ‘t Hooft and
Martinus Veltman proved that the entire theory of the Standard Model is
renormalizable, and is therefore consistent and predictive.15 The modern
interpretation of renormalization with sound theoretical and physical footing
was accomplished by Kenneth Wilson. Using techniques of renormalization,
he was able to solve an outstanding problem in condensed matter physics
called the Kondo problem.16 After his work, renormalization became a
standard tool for particle physicists and condensed matter physicists alike.



Exercises
9.1 Dilation Operator. In Example 9.1, we identified the dilation operator

D̂ as

(9.80)

In this exercise, we will study some properties of this operator.

(a) The momentum operator is P̂μ = −i∂μ. What is the commutator of
the dilation and momentum operators,

(9.81)

Can the result of this commutator be expressed in terms of
familiar operators?

(b) What are the eigenfunctions of the dilation operator D̂? Show
that a function f of spacetime position x of the form

(9.82)

for some number Δ, is an eigenfunction. What is its eigenvalue?
What does the eigenvalue represent?

9.2 Expansion of Differential Cross Section for Thrust. In Example 9.2,
we calculated the resummed cross section for thrust to all orders in αs,
but in the soft and collinear limit. In Example 7.2, we calculated the
differential cross section of thrust throughout its phase space, but only
to leading order in αs. Do these two calculations yield the same result
when the same limits are taken?

(a) From the result of Example 7.2, Eq. 7.141, expand in the limit
where τ → 1. Only keep those terms that diverge most rapidly as
τ → 1. This should correspond to the soft and collinear limit of
the differential cross section for thrust.

(b) From the result of Example 9.2, Eq. 9.78, expand to lowest order



in αs.

(c) How do these two limits compare? Do they agree, as expected?

9.3 Jet Multiplicity. In Exercise 6.7 from Chapter 6, we studied the
exclusive cross section for n-jet production in the ALEPH experiment
at LEP. The experiment counted n jets in an event if, for every pair i, j
of jets, the following inequality is satisfied:

(9.83)

for some number ycut < 1, where Ei is the energy of jet i and θij is the
angle between jets i and j. The fractional rates for n = 2, 3, 4, 5, and 6
or more jets as a function of ycut measured at ALEPH are reprinted in
Fig. 9.6. In this exercise, we will work to calculate these distributions.



Fig. 9.6 Plot of the n-jet fraction in e+ e− → hadrons events from the ALEPH experiment at the Large
Electron–Positron Collider as a function of the jet resolution variable ycut. Reprinted by permission
from Springer Nature: Springer Nature Eur. Phys. J. C “Studies of QCD at e+ e− centre-of-mass
energies between 91 GeV and 209 GeV,” A. Heister et al. [ALEPH Collaboration] (2004).

(a) When ycut is very small, most of the jets in the final state are
likely soft and relatively collinear to the quark or anti-quark off
of which gluons are emitted. For a soft and collinear gluon
emitted off of a quark, express the phase space restriction

(9.84)

in terms of z, the relative energy fraction of the quark, and their
splitting angle θ. Expand in the limits where z → 1 and θ → 0.



You should find

(9.85)

(b) For the process e+ e− → qqg, if Eq. 9.85 is satisfied then ALEPH
would identify the final state as having three jets. On the Lund
plane, identify the region where emissions must be forbidden for
the final state to be identified by as having two jets; that is, the
region defined by Eq. 9.85 must be forbidden.

(c) From this forbidden region, calculate the probability that there
are no emissions in the forbidden region; that is, the probability
state has two identified jets as a function of ycut that the final P2
(ycut). You should find

(9.86)

(d) How does the predicted two-jet rate of Eq. 9.86 compare to the
corresponding distribution in Fig. 9.6? From the prediction of
Eq. 9.86, below approximately what value of ycut is the cross
section for e+ e− → two jets not a good approximation to the
cross section for e+ e− → hadrons?

(e) Can you think how you would determine the probability for
three, four, five, or any number of jets greater than two?
Remember, the total probability to produce any number of jets in
the final state must be unity.

9.4 Properties of the DGLAP Equation. An important property of the
DGLAP equation is that it preserves the normalization of the parton
distribution functions. For instance, the proton has a net of two up
quarks. That is, the sum of the number of up quarks minus the number
of anti-up quarks in the proton is 2. In terms of the parton
distributions for up quarks fu and anti-up quarks  this is

(9.87)



This expression must be independent of energy scale Q for a proton to
always be a proton regardless of the energy at which you probe it.
Take the derivative with respect to Q2 of both sides of the expression,
and use the DGLAP equation, Eq. 9.52, to simplify it. Show that if the
DGLAP equation conserves the normalization, then it must be that

(9.88)

This is a bit of a weird equation, but it is actually true. The reason
that this equation is true is the collinear splitting function Pqg←q (x)
that we have been using is missing a key contribution. We considered
only the emission of real gluons, but the quark could have emitted a
virtual gluon that was then reabsorbed by the quark. This virtual
“loop” contribution to the splitting function is negative, and exactly
cancels off the divergence as x → 1 in Pqg←q (x). Another way to say
this is that the collinear splitting function Pqg←q (x) should actually be
regularized in the x → 1 limit. This regularization is accomplished by
the +-function expansion described in Exercise 7.1 of Chapter 7. The
integral of a +-function is 0, just like the requirement in Eq. 9.88.

9.5 Resummation of Q2 with DGLAP. We can see how the DGLAP
equations explicitly resum logarithms of energy scale Q2 to all orders
by expressing the parton distribution function as a series in
logarithms:

(9.89)

where Q0 is a reference energy scale. The cn coefficient functions will
be related to one another through the DGLAP equations. In this
exercise, we will see how this works.

(a) Insert the expansion of the parton distribution function, Eq. 9.89,
into the DGLAP equation, Eq. 9.52. Derive a recursion relation



that relates the coefficient functions  and 
Leave the collinear splitting functions implicit in the recursion
relation.

Hint: Match powers of logarithms on both sides of the DGLAP
equations.

(b) The first coefficient function,  is just the functional form
of the parton distribution function evaluated at the energy scale 

(9.90)

Solve the recursion relation for the coefficient functions 
in terms of  You should find

(9.91)

(c) A common way to make progress in solving the DGLAP
equations is to perform a Mellin transformation. For the parton
distribution function fq (x, Q2), its Mellin transformation is
defined to be

(9.92)

In the DGLAP equation of Eq. 9.52, multiply both sides by xN

and integrate over x ∈ [0, 1]. Show that the Mellin-transformed
parton distribution functions satisfy the differential equation

(9.93)

(d) Show that the Mellin-transformed parton distribution function
that solves the DGLAP equation of Eq. 9.93 is



(9.94)

where  is the Mellin-transformed parton distribution
function defined at an energy scale 

9.6 Jet Mass at the LHC. Jets, the collimated streams of particles from
QCD interactions, are created in copious numbers at the Large
Hadron Collider. One of the fundamental properties of a jet is its
mass; that is, the square of the sum of the four-vectors of the particles
of a jet. In this problem, we’ll perform some simple calculations to
understand these jets.

(a) The simplest jet that can have a non-zero mass (with massless
quarks) is one that has two constituent particles. Assume that a
jet has just two particles in it. Call the four-momentum of
particle 1 p1 and the four-momentum of particle 2 p2. Express the
squared mass of the jet  as

(9.95)

in terms of the transverse momenta p⊥1, p⊥2, pseudorapidity η1,
η2, and azimuthal angles ϕ1, ϕ2 of the two particles.

(b) Now, Taylor expand the result to lowest non-zero order in the
small-angle limit. To take this limit, assume that |η1 − η2 | ≪ 1
and |ϕ1 − ϕ2 | ≪ 1 and that the pseudorapidity differences are
about the same size as the azimuth differences. Express the result
in terms of 

(c) In this limit, we can express the jet mass in terms of the relative
transverse momentum fraction. Define the jet’s transverse
momentum to be p⊥J = p⊥1 + p⊥2 and z = p⊥1 /p⊥J. Rewrite
the squared jet mass in the collinear limit from part (b) in terms
of z, p⊥J, and R. You should find

(9.96)



(d) With this expression, we will calculate the average jet mass.
Using the universal collinear splitting function for gluon
emission off of a quark as the differential probability distribution

(9.97)

calculate the average squared jet mass  using the result of
part (c).

The definition of the average squared jet mass is

(9.98)

To do this integral, θ2 = R2 and  is the functional form
for the squared jet mass from part (c) in terms of energy fraction
z and splitting angle θ. The boundaries of the angular integral
extend from 0 to an angle called the jet radius, which we can
denote by R0. To define the angular region of interest in a jet, jet
algorithms are used that identify collimated, energetic particles
in a detector. The jet algorithm used in this problem is to just
associate two particles as a jet if they are within an angle R0 of
one another, which is referred to as a kT -type algorithm (read:
“kay-tee”).17

(e) The plot in Fig. 9.7 presents data from the ATLAS experiment in
which they measured the jet mass on jets identified with a kT -
type algorithm called Cambridge–Aachen.18 They used a jet
radius of R0 = 1.2 and the transverse momentum of the jets
ranges from 300 < p⊥J < 400 GeV. Using your expression from
part (d), predict the root-mean-square of the jet mass for these
data. How does this prediction compare to the plot from
ATLAS?



Fig. 9.7 Distribution of the mass of jets in data collected by the ATLAS experiment in 7 TeV proton
collisions. From G. Aad et al. [ATLAS Collaboration], “Jet mass and substructure of inclusive jets in 

 TeV pp collisions with the ATLAS experiment,” J. High Energy Phys. 1205, 128 (2012)
[arXiv:1203.4606 [hep-ex]].

9.7 Underlying Event at Hadron Colliders. In this chapter, we studied the
probability for collinear gluon emission from a quark. Consider a
quark from a proton that is involved in a high-energy collision at the
LHC. This quark is traveling along the proton beam, in the +ẑ-
direction. Using the probability distribution for the energy fraction 1
− z and the splitting angle θ of a soft gluon off of a quark,

(9.99)



you will study the distribution of soft (= low-energy) radiation that
permeates every collision event at the LHC. This radiation is called
the underlying event.

(a) Change variables in the probability distribution written above to
p⊥, the transverse momentum of the gluon, and η, the
pseudorapidity of the gluon. You will need the energy of the
quark before emitting the gluon; call the energy of the quark 

 where x ∈ [0, 1] is the energy fraction of the quark from
the proton and ECM /2 is the energy of the proton. Recall that in
Eq. 9.99 above, z is the energy fraction of the quark after
emitting the gluon.

Hint: Make sure to expand the expression for pseudorapidity,
Eq. 5.11, in the small-angle limit.

(b) Does the distribution of this radiation depend on pseudorapidity?
In an experiment like ATLAS or CMS, describe in words what
the underlying event would look like in your detector. Can you
give a reason as to why it is so useful to use pseudorapidity as a
coordinate in a hadron collider?

(c) Figure 9.8 is a plot of the pseudorapidity η distribution of the
average transverse energy which is sensitive to the underlying
event in the ATLAS experiment. It extends out to η = 4.5. What
angle in degrees above the proton beam does η = 4.5 correspond
to?

(d) Are these data in the plot (approximately) consistent with your
result in part (a)? Explain why or why not.



Fig. 9.8 Pseudorapidity distribution of the average particle activity measured as transverse energy
which is sensitive to the underlying event in pp → two-jet events in 7 TeV collisions at ATLAS. From
G. Aad et al. [ATLAS Collaboration], “Measurements of the pseudorapidity dependence of the total
transverse energy in proton–proton collisions at s = 7 TeV with ATLAS,” J. High Energy Phys. 1211,
033 (2012) [arXiv:1208.6256 [hep-ex]].

9.8 Jet Event Display. Figure 9.9 is an event display of jets produced in
proton collisions at the LHC and recorded by ATLAS. How many jets
do there appear to be in this event? For each jet, estimate its
transverse momentum and determine the pseudorapidity η and
azimuth angle ϕ at which the center of the jet is approximately
located.



Fig. 9.9 Event display of a pp → jets event in 7 TeV collisions at ATLAS. Credit: ATLAS Experiment
© 2018 CERN.

9.9 Research Problem. The approximate scale invariance of QCD gave us
insight into the structure of jets and the interactions of quarks and
gluons at high energies. How far can this insight be pushed to
understand QCD? Can we completely understand a theory that is like
QCD but exactly scale invariant?
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Parity Violation

With the prediction and observation of jets, we close our discussion of QCD.
In this chapter, as the foundation for the remainder of the book, we are going
to turn back the clock to the 1930s and 1950s when another fundamental
force was beginning to be identified. The evidence for this new force was
very different from that of QCD. While QCD was identified as responsible
for hadronic bound states of quarks, the evidence for this other force was
almost the antithesis of a bound state. As more particles were discovered in
the mid-twentieth century, the ways in which they decayed exhibited some
odd and very counterintuitive properties. The most shocking feature of many
of these decays was that they violated parity conservation, previously a
sacred physical principle. Left- and right-handedness were observed to be
treated differently in these decays, something that would never happen with
gravity, electromagnetism, or QCD. This new force, called the weak force,
completely changed ideas of what a force could be, and required significant
theoretical developments to fully understand it.

The violation of parity in nuclear decays is our invitation into studying the
weak force. From this observation, we are able to construct a
phenomenological model that describes the data on the weak force. This
model, called the V − A theory, is extremely precise in its realm of
applicability, but is not a satisfactory fundamental theory of Nature. In
Chapters 11 through 13, we will keep peeling back the layers of the weak
force, discovering surprise after surprise (massive spin-1 force carriers,
particle–anti-particle asymmetry, particle oscillations, etc.) along the way.
The ultimate prediction of the weak force is the requirement of a spin-0
boson, called the Higgs boson, upon which this whole framework sits.

But it all starts with the seemingly innocuous observation of parity
violation.



10.1 Decay of the Neutron
In the 1930s, with the discovery of the neutron, it was shortly thereafter
realized that the neutron decays. Free neutrons not bound in a stable atomic
nucleus have a lifetime of about 15 minutes and are observed to decay to a
proton and an electron:

(10.1)

This decay is allowed by energy–momentum conservation (the mass of the
neutron is 939.6 MeV, the mass of the proton is 938.3 MeV, and the mass of
the electron is 511 keV) and by charge conservation, because the neutron is
neutral. This model of the decay makes definite predictions: the neutron must
be a boson (spin-0 or spin-1) because the proton and electron are both spin-
1/2 particles, and in an experiment, the energy of the electron is a unique
value in the neutron rest frame. In the neutron rest frame, we would see

We can determine the energy of the electron via four-momentum
conservation. Note that the invariant masses before and after the decay must
be equal:

(10.2)

If we work in the frame in which the neutron is at rest and the proton and
electron momenta are along the ẑ-axis, then their four-momenta are

(10.3)

where pz is the as-of-yet undetermined z-component of momentum. Solving
for pz using Eq. 10.2 and plugging in the appropriate masses of particles, we
expect that the electron in this decay has an energy of Ee = 1.2 MeV. Thus,
running this experiment over and over, we should repeatedly find electrons
with energy of 1.2 MeV.



However, when this experiment was done, that is not what was observed.
Instead of the electron always having this energy, it was observed to have a
distribution of energies that was always less than 1.2 MeV! Additionally, the
prediction that the neutron is a boson is inconsistent with experiments
observing radioactive decays of unstable elements. Atoms before and after
radioactive decays were observed to still be fermions (half-integer spin),
which is inconsistent with the spin-0 hypothesis.

These observations led Wolfgang Pauli,1 Enrico Fermi, and others to
postulate the existence of the neutrino, a massless (or, rather, very small-
mass) spin-1/2 particle that was produced in the decay of a neutron:

(10.4)

The (anti-)neutrino  is electrically neutral (neutrino means “little neutral
one” in Italian). Fermi introduced a phenomenological model to describe this
decay,2 but it turned out to be incorrect for subtle reasons. We won’t discuss
his theory here but we’ll explore in detail the properties of the interaction that
governs this decay. Our goal for now will be to describe one of the most
startling particle physics experiments of the twentieth century, led by
Chinese-American physicist Chien-Shiung Wu. To describe it, though, we
need some background.



10.2 Discrete Lorentz Transformations

10.2.1 Parity Transformations
In our discussion of Lorentz transformations in Chapter 2, there were classes
of possible transformations that we ignored, mostly for brevity. These were
the “large” transformations that corresponded to matrices with negative
determinant. One example of such a transformation is parity; or, the
transformation that inverts spatial axes. The parity operator P, when acting on
the position vector  negates it:

(10.5)

Parity can be thought of as viewing the physical system in a mirror. Vectors,
such as position  will be flipped in the mirror. For example, imagine that
there is a ball that rolls by to your right with velocity 

In this figure, I’ve denoted your left and right arms. In a mirror this would
look like:

In a mirror, the velocity of the ball has flipped: it is going to the left. Under a



parity transformation the velocity vector ⃗v is negated, just like position:

(10.6)

To see how this follows from Eq. 10.5, the velocity is the time derivative of
position:

(10.7)

and time t does not change under a parity transformation.
Properly, only objects that flip when seen in a mirror (that is, a parity

transformation) are vectors. Objects that do not flip under parity are called
pseudovectors. Because pseudovectors do not flip when viewed in a mirror,
one could call them “vampire vectors.”3 An example of a pseudovector is
angular momentum. Consider a spinning wheel that from your perspective is
rotating bottom-over-top:

The direction of angular momentum  has also been denoted here. In a
mirror, you would see the exact same thing:

The reason for this is that angular momentum  is formed from the cross-
product of two (true) vectors, position and momentum. Angular momentum
is

(10.8)



and under parity

(10.9)

and so  Pseudovectors, such as angular momentum, do not transform
under parity. Other examples of pseudovectors are torque and magnetic field.
Both are defined from a cross-product of vectors, which is why they do not
transform.

Note that two applications of parity returns us to the initial state, and so P2

= 1. That is, the eigenvalues of the parity operator are +1 and −1, and this can
potentially be a useful quantum number to classify particles. For example, the
members of the pion triplet π+, π−, and π0 are pseudoscalars. Scalars, like
pure numbers, do not transform under parity. Three apples in a mirror are still
three apples. Pseudoscalars, however, do transform under parity. The neutral
pion, for example, is negated under the action of parity:

(10.10)

Often, though, parity is not so interesting because many physical systems
are invariant under it. For example, Maxwell’s equations are

(10.11)

of course in natural units. Maxwell’s equations are unchanged under a parity
transformation of all of the objects that appear in them:

(10.12)

Note that  and the current density  are vectors, while the charge density
ρ is a scalar and the magnetic field  is a pseudovector. Because Maxwell’s
equations are unchanged under parity, we say that electromagnetism is parity
invariant.

One can also show that the Lagrangian of QCD is invariant to parity
transformations. So, with these two examples as our guide, the expectation is



that fundamental interactions are invariant to parity.4 More on this in a
second.

Starting in Section 10.3, it will be enlightening to know the parity
transformation of a fermion. A more rigorous derivation for the parity
transformations of spinors can be developed through construction of unitary
operators that act on the individual momentum eigenstates in an appropriate
way. While such a derivation would potentially be enlightening, it requires
significant technical details, and so we will take a different route. We start
from the Dirac equation and act the parity operator on it. One side of the
Dirac equation consists of the product of the particle’s momentum and the
Pauli sigma matrices acting on the spinor, while the other side of the Dirac
equation is simply 0. The parity transformation of both sides of the Dirac
equation must agree, and because 0 transforms to itself under parity, a
solution of the Dirac equation must transform into another solution of the
Dirac equation under parity. Let’s see how this works in particular, in the first
example of this chapter.

Example 10.1 What is the parity transformation of a spinor solution to the
Dirac equation?

Solution
We consider the Dirac equation for a right-handed, initial-state, massless
fermion uR (p) with arbitrary momentum p. In spherical coordinates, we can
write p as

(10.13)

where the energy of the fermion is E, θ is the polar angle to the +ẑ-axis, and φ
is the azimuthal angle about the ẑ-axis. From Section 6.1.1, this spinor
satisfies the equation

(10.14)

Under parity, the three-momentum  is negated, which is equivalent to
combined action of the polar angle θ transforming to π − θ and the azimuthal
angle transforming to φ + π:



(10.15)

Note that this transformation maintains the requirement that the polar angle θ
∈ [0, π]. Also, this is not just a proper rotation: a proper rotation can only
add a fixed angle to another angle, and not negate an arbitrary angle. A parity
transformation does not change the energy of the fermion.

We can then apply this parity transformation to the Dirac equation for the
spinor uR (p). We have

The expression on the final line is just the Dirac equation for a left-handed
spinor, uL (p)! That is, the final line of this transformation is only satisfied if

(10.17)

So, parity transforms a right-handed fermion into a left-handed fermion.
Keep this in mind when we study nuclear decays in Section 10.3.

In the same way, the parity transformation of a left-handed, initial-state,
massless fermion can be determined by using the transformations of θ and φ
on its Dirac equation. In this case, we have



The expression on the final line is only satisfied by a right-handed spinor, or
that

(10.19)

Thus, parity transforms a left-handed fermion into a right-handed fermion.

With these transformations of spinors identified, we can then explicitly
construct the matrix that implements a parity transformation. We have
demonstrated that

(10.20)

Note that the trace of this P matrix is 0 and the determinant is −1. Therefore,
the eigenvalues of the matrix that implements parity transformations on
spinors are indeed ±1, in agreement with the general analysis discussed
above.

10.2.2 Time Reversal and Charge Conjugation
There are two other discrete Lorentz transformations that can be used to
classify elementary particle physics. One of these is time reversal, T, which,
as its name suggests, flips time:

(10.21)

where t is time. Just like parity, the time-reversal operator has eigenvalues of



±1, as two applications of T gives the identity operator: T2 = 1. Unlike for
parity, a vector may or may not flip with T. For example, the position vector
⃗x is unchanged:  By contrast, momentum  is flipped:

(10.22)

Angular momentum  is negated under a time-reversal, transformation. If
time is reversed, then an object is rotating in the opposite direction:

(10.23)

Maxwell’s equations are invariant under T as well as P. The T
transformations are

(10.24)

I’ll leave it for you to determine why the magnetic field  flips under time
reversal, but the electric field does not.

The simple time-reversal operation as defined in Eq. 10.21 has some
strange properties in quantum mechanics. Consider the Schrödinger equation
for a wavefunction ψ:

(10.25)

Ĥ is the Hermitian Hamiltonian that describes the energy states of the system
of interest. Let’s assume that the Hamiltonian is time-independent; then, it is
clearly invariant under the action of T:

(10.26)



Considering the action of T on the whole Schrödinger equation, we find

(10.27)

If we just posit that T flips the sign of time, then the Schrödinger equation
transforms as

(10.28)

The solution to this equation, T [ψ], will necessarily be different than ψ as
defined in Eq. 10.25. This is very weird because the Hamiltonian is time-
reversal invariant. The statement of time-reversal invariance is that we cannot
tell if time is going forward or backward. However, if the time-reversed
solution to the Schrödinger equation is not equal to the original solution, then
we can tell what the direction of time is.

The way out of this is to have T turn all factors of i into −i in addition to
flipping the sign of time:

(10.29)

This fixes our earlier problem, but at the expense defining T to be an anti-
unitary operator. However, this property is vital as it ensures that positive
energy states are mapped to positive energy states under the action of T. This
quantum mechanical definition of time reversal was introduced by Eugene
Wigner. Note that Maxwell’s equations have no imaginary numbers, and so
the action of this quantum mechanical T on Maxwell’s equations is exactly
the same as identified in Eq. 10.24.

You will study the action of this time-reversal operator on spinor solutions
to the Dirac equation in Exercise 10.1. With this operator, one can show that
the quantum electrodynamics and QCD Lagrangians are both invariant to
time-reversal transformations. So, we expect fundamental interactions to be
invariant to time reversal.

There is a third discrete transformation that we can perform. It is charge
conjugation, which acts to flip the sign of all charges. Unlike parity and time
reversal, charge conjugation only acts non-trivially when a system has non-



zero charges. Positions, momenta, and angular momenta are all invariant
under charge conjugation. The charge conjugation operator, C, negates a
charge q:

(10.30)

Therefore, the charge density ρ and the current density  are also negated by
charge conjugation. The full charge conjugation transformations for the
objects appearing in Maxwell’s equations are

(10.31)

Note that the electric field is negated under charge conjugation: if the charge
of a particle is flipped, then the direction of the field lines is flipped, too. As
with parity and time reversal, Maxwell’s equations are charge-conjugation
invariant, which you can verify. Additionally, charge conjugation is also a
symmetry of QCD.

The action of charge conjugation flips the sign of charges, but does nothing
to spin. Therefore, its action on spinor solutions to the Dirac equation is to
turn particles into antiparticles without affecting the helicity of that particle.
So, a spinor describing a particle solution to the Dirac equation u should turn
into a spinor describing an anti-particle solution:

(10.32)

and vice-versa. What about helicity assignments? Because helicity is
unaffected by charge conjugation, the helicity label is flipped; that is, a uR
spinor is transformed to a vL spinor:

(10.33)

In the massless solutions to the Dirac equation that we studied in Section
6.1.1, we found that uR = vL, so this charge conjugation operation seems to
just be the identity operator. However, this shouldn’t be surprising: in solving
the Dirac equation there, there was no electric charge to be found, and so we
should indeed find the exact same solution to the Dirac equation. In Exercise
10.2, we’ll consider the Dirac equation in which the spinor is coupled to the



photon. In this case, you’ll find a non-trivial transformation of the Dirac
equation, as expected.

A summary of the P, T, and C operators and their action on the spinor uR
is presented in Table 10.1. The time-reversal transformation on a spinor is a
bit strange as it does not transform a spinor with well-defined helicity into
another spinor with well-defined helicity. For a spinor uR, the transformation
is

(10.34)

Table 10.1 Action of C, P, T on spinors

The ϵ object is called the anti-symmetric symbol. The transformations for
other spinors are found by relabeling appropriately.

10.2.3 CPT Theorem
With the definitions of C, P, and T, how they transform vectors, and that they
are observed to be symmetries of electromagnetism and QCD, one might
postulate that they, individually, are symmetries of all possible fundamental
interactions. This is reasonable and most physicists believed it until the mid-
1950s, for reasons that we will discuss shortly. Actually, all that is proved
regarding C, P, and T is that the application of all of them together is
required to be a symmetry, if you have a Hermitian Hamiltonian, and vice-
versa. This result is known as the CPT theorem (or historically as the Lüders–
Pauli theorem) and has been proved independently by many people.5 It is
entirely possible and allowed for two of C, P, and T to be violated while of
the action CPT is preserved. This would be weird, but Nature does not care
about our aesthetic tastes.

Before we take what we learned about P, T, and C transformations, the
statement of the CPT theorem deserves re-emphasizing. The combined action



of CPT on the Hamiltonian of your system is a symmetry if and only if the
Hamiltonian is Hermitian. Equivalently, CPT is a symmetry of your system if
and only if the energy eigenvalues are all real. Another way to say this is that
the action of CPT on your Hamiltonian H is just complex conjugation:

(10.35)

Of course, the Hamiltonian is Hermitian only if H = H†. So, CPT has deep
consequences for the Hilbert space of states that exist for the system under
consideration.



10.3 Parity Violation in Nuclear Decays
Now, back to where we began this chapter. Neutron decay, or nuclear decay
more generally, was an extremely important field of research politically in the
1940s. However, if you just want to harness the energy from nuclear decay,
you don’t care that much about whether C, P, or T is violated. In the mid-
1950s, Tsung-Dao Lee and Chen-Ning Yang pointed out that the force that
governs neutron decay may indeed violate parity.6 This would be weird and
unfamiliar because both electromagnetism and QCD preserve parity.
Nevertheless, up until then no experimental result had confirmed parity
conservation or violation in neutron decays.

Enter C. S. Wu. With motivation from Lee and Yang’s paper, Wu led an
experiment to directly test the parity properties of neutron and nuclear decay.
Her experiment was deliciously simple. Wu observed the decay of cobalt-60
to nickel-60,

(10.36)

in a magnetic field. The magnetic field was applied to polarize the cobalt
nuclear spin along a preferred axis. Then, one can observe the direction in
which the electron is emitted: either parallel or anti-parallel to the direction of
nuclear spin/magnetic field. So, the set-up of the experiment is:

The correlation of the emitted photons with the spin of the60 Co nucleus is
used as a control. How does this test parity violation or conservation? Let’s
see what the predictions are.

If parity is conserved, then let’s imagine what the parity-reversed



experiment would be. To determine this, we can just parity transform each
component of the experiment. First, the magnetic field  does not transform
under parity, and neither does the nuclear spin. Both are pseudovectors, as
they are defined by a cross-product. On the other hand, the momentum of the
electron (or anti-neutrino) is a vector, and as such turns into the negative of
itself under parity. That is, under a parity transformation, the experimental
set-up is unchanged (because the important quantities are pseudovectors),
while the final configuration is flipped, because you only care about vectors.
So, if parity is conserved, then with equal likelihood you should observe the
electron parallel to and anti-parallel to the direction of nuclear spin:

Then, you watch a bunch of60 Co decay, counting the directions of the
electrons, and determine how many were parallel and how many were anti-
parallel to the nuclear spin. If parity is not conserved, then you will simply
see more electrons in one direction than the other.

In an extremely shocking result, Wu found that more electrons were
emitted in the decay opposite to the direction of nuclear spin.7 The key result
from Wu and her team’s paper is plotted in Fig. 10.1. This plot shows how
the asymmetry in the direction of emission of electrons (historically called “β
rays”) depends on time. The system was cooled to extremely low temperature
so that the thermal excitations of the60 Co nucleus were small and so its spin



could be polarized in a magnetic field. As the system warms up, the thermal
excitations eventually completely depolarize the60 Co nucleus, and so after
about 6 minutes, no preferred electron direction is observed. Before that time,
however, the relative number of electrons that are emitted opposite to the spin
of the60 Co nucleus (the “x”s on the plot) is different and much larger than
the number of electrons emitted in the direction of nuclear spin (the “•”s on
the plot). By using the correlation between the two emitted photons and the
nuclear spin, Wu estimated that when maximally polarized, at least 70% of
the electrons were emitted opposite to the direction of nuclear spin!

Fig. 10.1 A plot of the relative number of electrons emitted opposite to (x) or in the direction of (•) the
nuclear spin of60 Co as a function of time. At late times, nuclear polarization is lost due to thermal
effects. At early times, the electron is clearly observed to preferentially be emitted opposite to the
direction of nuclear spin. Reprinted figure with permission from C. S. Wu, E. Ambler, R. W. Hayward,
D. D. Hoppes and R. P. Hudson, Phys. Rev. 105, 1413 (1957). Copyright 1957 by the American
Physical Society.

When told of this result, Wolfgang Pauli stated that the result was “total
nonsense” and that the experiment “must be repeated.”8 It was,9 and has been
many times since, and the same result was observed. Apparently, the force
that governs nuclear decays, in contrast to electromagnetism and QCD,
violates parity. We now call this force the weak force, and we will study the
properties and consequences of the weak force in the rest of this book.



10.3.1 Consequences of Parity Violation
Let’s dive into Wu’s observation of parity violation a bit more. If parity is
violated in weak-force interactions, then this means that systems that are
related by a parity transformation do not exist with equal probability. Earlier
in this chapter, we demonstrated that under a parity transformation, a right-
handed electron turns into a left-handed electron, and vice-versa. Thus,
because parity is violated in the weak interactions, we expect that the number
of right- and left-handed electrons produced in the decay of60 Co will not be
equal. Further experimental evidence demonstrated that the electrons
produced from the decay of60 Co are actually always left-handed: their
direction of momentum is always opposite to that of their spin. That is, not
only is parity violated by the weak interactions, but it is violated maximally:
the difference between the probability for a left-handed electron versus a
right-handed electron to be produced in the decay of60 Co is 100%.

The brilliance of Wu’s experiment is that it provides evidence (though
somewhat indirectly) for what the helicity of the unobserved anti-neutrino
produced from the60 Co decay can be. That is, one can measure the spin of
the nucleus before and after the decay, and the spin of the electron. Enforcing
conservation of angular momentum on the anti-neutrino then tells you what
its spin must be, even though you can’t measure it directly. With the electron
observed to always be left-handed in these decays, it turns out that
conservation of angular momentum enforces that the anti-neutrino must be
right-handed, with its spin parallel to its momentum. Every confirmed
experiment of the weak interactions has observed left-handed neutrinos
and/or right-handed anti-neutrinos. This suggests that only one helicity of
neutrinos exists. This is very weird, and unexpected from our experience with
other spin-1/2 particles like electrons or muons. In particular, we know that
from our study of e+ e− → μ+ μ− scattering, because electrons and muons can
have either left- or right-handed helicity, this leads to the distinctive 1 + cos2

θ distribution of the differential cross section.

Box 10.1 Historical Profile: Chien-Shiung Wu

Chien-Shiung Wuwas a Chinese-American physicist who was a professor
at Columbia University when she lead the experiment that discovered
parity violation in the weak interactions. Wu had been a student of Ernest



Lawrence at UC Berkeley, graduating just before the onset of World War
II. Wu’s experiment was conducted at the National Bureau of Standards in
Washington, D.C., in the days between Christmas 1956 and New Year’s
1957. The paper of their results was sent to Physical Review in mid-
January and was published shortly thereafter. For their observation that the
weak nuclear force could violate parity, T. D. Lee and C. N. Yang were
awarded the Nobel Prize in Physics in 1957, only months after Wu’s
experiment. (That’s how shocking the result was!) C. S. Wu, despite
leading the experiment that tested parity violation in nuclear decays, was
not acknowledged by the Nobel Committee in what is perhaps the grossest
oversight in the history of the prize. (Other gross omissions include Lise
Meitner, Marietta Blau, and Jocelyn Bell Burnell.) While she did not win a
Nobel Prize, Wu was acknowledged with numerous awards later, including
the first Wolf Prize in physics. Later in life, Wu was outspoken against
gender discrimination, and successfully petitioned for equal pay at
Columbia in 1975, 30 years after she first arrived there.

The fundamental process in the60 Co decay to60 Ni is the decay of a
neutron to a proton. For a neutron to decay into a proton, one of the
constituent down quarks d of the neutron must turn into an up quark u. In
terms of the constituent quarks, this decay is

(10.37)

where we have added an “e” subscript to the anti-neutrino, as we call it an
electron anti-neutrino. From the discussion of spin in the weak interactions,
apparently only left-handed particles know about the weak force. With this
observation, the decay of a neutron into a proton can be described by the
interaction Lagrangian term:

(10.38)

Here, we’ve denoted the two-component left-handed spinors of the
corresponding fields by their particle name; eL is the left-handed spinor of the
electron, for example. The coefficient GF is called the Fermi constant, and



the 4 and  are there for historical reasons. The theory in which this
interaction was constructed is called the V − A theory (vector minus axial),
developed shortly after Wu’s experiment.10 It is the precursor to the theory of
the weak interactions, which is the fundamental theory. In the next section,
we will discuss the predictions (and shortcomings) of the V − A theory, and
the need for a more fundamental theory that describes all known phenomena
and predicts more.



10.4 The V − A Theory
In the previous section, we discussed the weird, or rather, super-weird
phenomena of neutron decays. Apparently, unlike electromagnetism, the
strong force, and gravity, whatever the force is that mediates neutron decay
violates parity. All particles produced in neutron decays are observed to be
left-handed: that is, if they are massless or nearly massless (like neutrinos or
electrons at high energies), their direction of momentum is always opposite to
that of their spin. This observation actually means that parity in nuclear
decays is violated maximally: if one performs a parity operation on a nuclear
decay, the result of that transformation is a physical configuration that has
zero probability to occur.

To see what this means, let’s look at the left-handed neutrino just traveling
through space:

Note that the spin is anti-parallel to the momentum or velocity of the
neutrino, so its helicity is

(10.39)

Under a parity transformation, the spin (= angular momentum) of the
neutrino is unchanged, as it is a pseudovector. However, the direction of the
neutrino (its momentum) is flipped:

(10.40)



After this parity transformation, the neutrino’s helicity is right-handed: h =
+1/2. If parity were conserved, then the V − A interaction of Eq. 10.38 would
have to include both left-and right-handed particles. If parity were partially
violated, then the interaction would have to include both left- and right-
handed particles, but with different coefficients. The fact that there are no
right-handed particle contributions in this interaction means that parity is
maximally violated.

This theory is called “vector minus axial” because it is described by one
linear combination of vectors and axial vectors (also called pseudovectors).
Note that under a parity transformation, this linear combination turns into the
orthogonal linear combination:

(10.41)

10.4.1 Decay of the Muon
In the rest of this chapter, we study the predictions of the V − A theory. One
could calculate the decay of the neutron with this theory, but it is
unnecessarily challenging to illustrate the features, as one must account for
the non-zero masses of all particles except for the neutrino. So, for simplicity,
we study the decay of the muon. The decay of the muon is described by the
interaction Lagrangian in the V − A theory:

(10.42)

This governs the decay  Here, we note that there are two
types of neutrinos in this decay. νμ is the neutrino associated with the muon,
while  is the anti-neutrino associated with the electron. The measurement of
the lifetime of the muon is common in upper-level undergraduate laboratory
courses.

To start, as we always do, we draw the Feynman diagram that corresponds
to the interaction described by the Lagrangian above. The Feynman diagram
for the muon decay  is



The corresponding matrix element from this Feynman diagram is

(10.43)

Before we calculate this, there are a few things to note. First, note the spinor
assignments: for example, the muon, as the initial-state particle, has a uL (pμ)
spinor. By contrast, the electron, as a final-state particle, has a  spinor.
The strength of the interaction is controlled by the factor with the Fermi
constant, which comes directly from the interaction Lagrangian, Eq. 10.42.
The spinors of particles are labeled left-handed and those of antiparticles
right-handed, from the form of the V − A theory.

We evaluate the matrix element in the frame in which the muon is at rest;
that is, the muon must be massive. For simplicity, we assume that the
electron and neutrinos are massless. As the electron is about 200 times less
massive than the muon (and neutrinos are further thousands of times less
massive than the electron), this is an excellent approximation. Though we
pick a particular frame in which to evaluate the matrix element, because it is
Lorentz invariant it will have the same value in any frame. In the matrix
element, we need to evaluate the spinor product

(10.44)

In this expression, we have written explicit spinor indices to denote the
entries of the spinors or elements of the sigma matrices. The indices are
repeated, and hence summed over, and range over 1 and 2: a, b, c, d ∈ {1,
2}. Apparently, to evaluate this spinor product requires evaluating the four-
vector matrix product

(10.45)



What is this?
To evaluate this, we need a nice way to express the sigma matrices. For

example, consider the identity matrix, I. What are its elements? Well, it only
has non-zero entries if the row and column are equal. We can then express
this using the Kronecker-δ symbol:

(10.46)

Recall that δab = 1 if a = b, and 0 otherwise. We can use the Kronecker-δ to
express the entries of all of the sigma matrices:

(10.47)

(10.48)

(10.49)

(10.50)

Using these expressions, we can evaluate the matrix product 
We have

The matrix with entries ϵab ≡ δa1 δb2 −δa2 δb1 is the anti-symmetric symbol.
In matrix form, it is

(10.52)

Therefore, we have shown that  This is an example of a
Fierz identity. We can use this result to evaluate the spinor products. Writing
out all indices, we have



(10.53)

In the last line, we used that ϵbd = −ϵdb.
Now, we want to figure out what these ϵ anti-symmetric symbols are

doing. Let’s focus on the matrix product  first. Recall for a
momentum vector p at an angle θ with respect to the ẑ-axis and an angle φ
about the ẑ-axis, the spinor is

(10.54)

Let’s act on this with the ϵ symbol:

(10.55)

The ϵ-symbol turns  into u
R(p)! We can do the same thing with 

 We have

(10.56)

Putting this into the spinor products, we have

Then, the matrix element is



(10.58)

The absolute squared matrix element for muon decay is

(10.59)

We have evaluated some of these spinor products before. The first squared
spinor product is

(10.60)

For the second spinor product we might be tempted to write the same (or the
related) expression. However, we have to be a bit careful, because we require
that the muon is massive. So, we have to treat the spinor uL (pμ) carefully.

The simplest way to do this is to evaluate it in one frame, and then Lorentz
boost to an arbitrary frame. Let’s work in the frame where the muon is at rest
and the electron anti-neutrino is traveling along the +ẑ-direction. Then, the
spinors are

(10.61)

The expression for  is familiar, but for uL(pμ) it is probably not. The overall
factor of  is normalization, just like the  for massless spinors. That is,
it follows from the trace identity of the muon momentum dotted with the
sigma matrices. With pμ = (mμ, 0, 0, 0), the dot product is

(10.62)

In Exercise 6.2 of Chapter 6, you showed that the trace of this dot product
matrix is equal to the inner product of the corresponding spinor and its
Hermitian conjugate. For the case of the muon at rest, the trace and inner
products are then

(10.63)



Note that we sum over left- and right-handed spinor products: for a massive
particle helicity is not Lorentz invariant. Taking the normalization of the left-
and right-handed spinors to be equal, this then results in the normalization
factor of Eq. 10.61.

ξ from Eq. 10.61 is an arbitrary two-component spinor normalized such
that ξ† ξ = 1. This represents the probability amplitude of the spin of the
muon in its rest frame. To evaluate the spinor product, we need to
correspondingly average over the spin of the muon, as its direction of spin is
arbitrary and not selected for in our experiment. If the muon is unpolarized,
then it has equal probability to be in the spin-up or spin-down state, and so
we can take

(10.64)

Now, evaluating the spinor product,

(10.65)

This is the muon rest frame evaluation of the Lorentz-invariant dot product 

Therefore, once the dust has settled, the squared matrix element is

(10.66)

The final state is described by three-body phase space, and so we use the xi
variables, where

(10.67)

Note that for muon decay  and Q = pμ. Then,

(10.68)



The squared matrix element is then written in terms of  as

(10.69)

This can then be plugged into Fermi’s Golden Rule for decays. The decay
rate Γ for three final-state particles is

(10.70)

While we haven’t explicitly discussed Fermi’s Golden Rule for decays, the
form should be reasonable. Note that there is the squared matrix element
which is integrated over three-body phase space Π3. The overall factor of
1/(2Eμ) is familiar from Fermi’s Golden Rule for scattering and comes from
consideration of the Compton and de Broglie wavelengths of the decaying
muon. Note that unlike the expression for the cross section, there is no
relative velocity factor in the decay rate. This is of course because the initial
state is a single particle, and not colliding particles. Finally, the decay rate Γ
has units of [energy]; that is, it has units of [time] −1. Indeed, Γ−1 is the
characteristic lifetime of the muon. The probability that the muon has
decayed by a time t = Γ−1 is equal to e−1 = 0.3678...

Plugging in the appropriate expressions and using the formula for three-
body phase space that was derived in Exercise 4.3 in Chapter 4, the decay
rate Γ for the muon at rest is

(10.71)

Note that the energy of the muon in its rest frame is Eμ = mμ. We can’t
measure the electron anti-neutrino momentum fraction  so let’s integrate
over it:

(10.72)



From here, we can define the decay rate differential in the electron energy
fraction xe :

(10.73)

By a change of variables, we can also calculate the decay rate differential in
the electron energy Ee in the muon rest frame. With

(10.74)

the decay rate differential in Ee is

(10.75)

This prediction of the decay rate differential in the energy of the electron
can be compared to muon decay data. Figure 10.2 shows muon decay data
from the TWIST experiment (the TRIUMF Weak Interaction Symmetry Test)
located at the Canadian national laboratory, TRIUMF. TWIST measured the
energy spectrum of electrons from the decays of muons that were bound in27

Al. Their data are compared to the differential decay rate in Eq. 10.75, using
the muon mass of mμ = 105.6 MeV. There are a few things to note in the
comparison of our prediction to the data:

1 The data nicely follow our predicted energy spectrum at intermediate
energies, and then diverge for electron energies near the upper endpoint
of about 53 MeV (≃ mμ /2). If you are considering electron energies near
53 MeV, then you are considering an exclusive process. The electron
from muon decay can emit photons and lose energy (through essentially
the same process that we studied with quarks and gluons) and this
effectively prohibits the electron from ever having an energy of half the
muon mass. That is, near the upper endpoint, there is a new relevant
energy scale Eep of

(10.76)



and Eep ≪ Ee near the endpoint. One can account for this new endpoint
energy scale, and doing so results in excellent agreement between
theory and data throughout the spectrum. You’ll study features of the
effects of photon emission on the measurement of electron energy in
Exercise 10.6.

Fig. 10.2 Electron energy spectrum from muon decays recorded at the TWIST experiment. Error
bands are included in the data points, and the dashed curve is the prediction from Eq. 10.75.
Reprinted data from table with permission from A. Grossheim et al. [TWIST Collaboration], Phys.
Rev. D 80, 052012 (2009). Copyright 2009 by the American Physical Society.

2 At low values of the electron energy Ee, the differential decay rate
decreases and actually vanishes as Ee → 0 with the approximation that
the electron is massless. This can be understood by considering the spins
of the final-state particles with this configuration. If the electron has
zero energy, then the two neutrinos must be back to back and their spins
aligned:



This configuration of final-state neutrinos has total angular momentum
1, and so the electron is necessary to ensure that the final state has total
spin 1/2 and to conserve angular momentum in this process. However, if
the electron is massless and has zero energy, its spin cannot affect the
angular momentum of the final state. Therefore, it’s impossible for the
electron to have zero energy by angular momentum conservation.

For a real electron with a non-zero mass me = 511 keV, the probability for
the electron to have its minimal energy of just the mass is proportional to
the ratio of the electron mass to the muon mass, me /mμ ≃ 0.005.

We can also calculate the total decay rate by integrating over xe. Doing
this, we find

(10.77)

The Fermi constant is GF ≃ 1.17 × 10−5 GeV−2,11 and the muon mass is
mμ = 105.6 MeV. Plugging in the numbers, the decay rate is then

(10.78)

Turning this into a lifetime τ (in seconds) by adding factors of ħ, we
have

(10.79)

The PDG says that the lifetime of the muon is 2.2 × 10−6 s. So, we’re
very close!

While the V − A theory makes nice predictions like this, theoretically,
it leaves a lot to be desired. Most importantly, it provides no explanation
for the force that mediates muon decay; that is, there is no force carrier
analogous to the photon or gluon. How do we resolve this? More in the
next chapter...



Exercises
10.1 Time Reversal of Spinors. To determine the transformation of a spinor

under time reversal, we start from the Dirac equation, just as we did
with parity transformations in Example 10.1. Starting from the Dirac
equation for a right-handed spinor ψR,

(10.80)

perform a time-reversal transformation on this equation. Show that
the solution to the time-reversed equation, T[ψR], can be expressed as

(10.81)

where ϵ is the anti-symmetric symbol.
Hint: Don’t forget that one of the Pauli sigma matrices has factors

of i in it.
10.2 Charge Conjugation of Spinors. We postulated that the action of

charge conjugation C on a right-handed spinor uR transforms it to vL :

(10.82)

When the spinor is not coupled to electromagnetism, this relationship
is trivial; however, the Dirac equation for a right-handed spinor ψR
coupled to the photon field Aμ is

(10.83)

This equation follows from extremizing the QED Lagrangian in Eq.
4.73. Here, e is the electric charge of the field ψR.

(a) From the charge conjugation transformations of the electric and
magnetic fields in Eq. 10.31, show that

(10.84)



You might want to refer to Section 2.2.3.
(b) Now, charge conjugate the Dirac equation of Eq. 10.83. Show

that

(10.85)

Does the solution of this equation C[ψR] indeed describe an anti-
particle with electric charge −e?

10.3 CPT on Spinors. Using the transformations established in Table 10.1,
act all of the C, P, and T transformations on the spinor uR. Show that

(10.86)

This is consistent with the claim from Section 10.2.3 that the
combined action of CPT on the Hamiltonian is complex conjugation.

10.4 C, P, T in Electromagnetism. We can construct the parity, charge
conjugation, and time-reversal transformations of the photon field Aμ
from the corresponding transformations of the electric and magnetic
fields presented in this chapter. In Exercise 10.2, you’ve already
shown that under charge conjugation, the photon is negated:

(10.87)

What are some consequences of this, and what about parity and time
reversal?

(a) A consequence of charge conjugation negating the photon is a
result called Furry’s theorem.12 It states that, because of the
properties of charge conjugation, the matrix element of the
scattering of an odd number of photons is 0. Can you argue why
this is the case? In particular, can you argue that 2 → 3 photon
scattering vanishes, M(γγ → γγγ) = 0?

Hint: What happens to this matrix element under the action of
C? Does that actually do anything?

(b) From the parity transformations of the electric and magnetic



fields in Eq. 10.12, determine the parity transformation of Aμ.
That is, what is

(10.88)

(c) From the time-reversal transformations of the electric and
magnetic fields in Eq. 10.24, determine the time-reversal
transformation of Aμ. That is, what is

(10.89)

(d) What is the combined action of CPT on the photon field Aμ ?
Show that

(10.90)

10.5 Electron Spin in Muon Decay. In our prediction of the energy
distribution of the electron from muon decay, we observed that when
the energy of the electron is maximized, the distribution is also
maximized; see Eq. 10.75. Draw the configuration of particle
momenta and spins when the electron energy is maximized. What is
the total angular momentum of the muon neutrino and electron anti-
neutrino? How does the spin of the electron compare to the spin of the
decaying muon at the endpoint?

10.6 Endpoint of Electron Energy in Muon Decays. In comparing our
prediction for the electron energy from muon decay to data in Fig.
10.2, we noted that near the upper endpoint the data are rapidly
suppressed. Understanding this in detail is quite complicated, but we
can make progress on understanding why the electron can never really
take away an energy of half the muon mass.

Electrons are electrically charged, and so they can emit photons
copiously. These photons take away energy from the electron which
we can estimate using the splitting functions that we constructed in
Section 9.2. The probability density for an electron to emit a photon at
a relative angle θ2 ≪ 1 with an energy fraction z ≪ 1 is

(10.91)



Here, we have just translated the result from Eq. 9.66 to photon emission off
of an electron; this involves removing the color factor CF and replacing the
strong coupling αs by the fine structure constant α. In the diagram, we have
labeled θ and z appropriately, to leading order in z ≪ 1. From this simple
expression, we will be able to estimate the average energy that the photon
takes from the electron, 〈zEe 〉.

(a) In our analysis of the observable thrust from gluon emissions off
of quarks in Section 9.3.1, we assumed that all particles were
massless and so θ could go to 0. When θ = 0, the probability for
gluon emission diverged. This followed from the form of the
quark propagator, which took the form

(10.92)

where pq and pg are the four-momenta of the quark and gluon,
respectively. Assuming that the electron propagator is of the
same form, show that when the mass of the electron me is
included the propagator is

(10.93)

Here, Eγ is the energy of the emitted photon. Note that there is no
angle θ for which this propagator can diverge.

(b) Assuming that me ≪ Ee and θ ≪ 1, estimate the angle θc at
which the non-zero electron mass becomes important.

Hint: You’ll want to do some Taylor expansions.



(c) This θc that you found is effectively the minimal value of the
angle θ. (θ can still go to 0, but the propagator is finite in that
limit.) With this angular cut θ > θc, determine the probability
distribution of the photon energy, Eγ = zEe. This is defined to be

(10.94)

You should find that

(10.95)

Don’t worry if the argument of your logarithm is just off by a
number.

(d) Now, take the mean of this distribution:

(10.96)

The limits of the integral have been purposefully suppressed.
What are the most natural upper and lower bounds on the
integral? Evaluate the average value in terms of the electron
mass me, the electron energy Ee, and the fine structure constant
α.

(e) Note that, for intermediate values of the electron energy in Fig.
10.2, the data are at slightly lower values than our prediction.
Evaluate this average photon energy 〈Eγ 〉 for α = 1/137, Ee = 30
MeV, and me = 511 keV. Does the energy that photons take
away seem to account for the difference between the
distributions, for 20 < Ee ≾ 40 MeV?

10.7 Kinematics of the IceCube Experiment.13 The IceCube experiment is
an expansive collection of photomultiplier tubes buried over a mile
(1.6 kilometers) deep in the ice cap of the South Pole. The goal of
IceCube is to observe extremely high-energy neutrinos that were



produced in supernovae or other astrophysical phenomena. The way it
does it is fascinating. The ice buried deep under the South Pole is
extremely clear, except for some dust and ash from mass extinction
events in the Earth’s history. High-energy neutrinos can pass through
the ice and hit a proton in the water molecules of the ice. This
interaction typically produces a muon and a neutron. The muon, if it
is of high enough energy, can travel through the ice above the speed
of light in ice, thereby emitting Čerenkov radiation. The Čerenkov
radiation is then observed in the photomultiplier tubes, and enables a
precise measurement of the energy and direction of the produced
muon.

A schematic illustration of the IceCube experiment is shown in Fig.
10.3. In this exercise, we will analyze the kinematics of the process 

 For very high-energy observed anti-muons, we will
be able to set a bound on the angle from the anti-muon to the initial
anti-neutrino.



Fig. 10.3 Cartoon of the IceCube Neutrino Detection Experiment located deep in the ice of the Earth’s
South Pole. The space in which the 5160 photomultiplier tubes that detect Čerenkov radiation are
located is approximately 1 km high, with a total volume of about 1 cubic kilometer of ice. Credit:
IceCube Collaboration.

(a) The scattering process

(10.97)

at IceCube occurs in the frame in which the proton (in the
nucleus of a water molecule) is at rest. Assuming that the anti-
neutrino’s momentum is aligned along the +ẑ-axis, write the
four-momentum of the anti-muon pμ and the neutron pn in terms
of the anti-neutrino energy  the nucleon mass mN, and the
scattering angle θ. You can safely assume that the anti-neutrino
and anti-muon are both massless and the proton and neutron
have identical masses equal to mN. The scattering angle is the
angle between the original anti-neutrino momentum and the anti-
muon’s momentum.

You should find:

(10.98)

(b) Figure 10.4 is a plot from the IceCube experiment that shows the
deposited energy into the experiment versus the declination
angle of the anti-muon from high-energy neutrino scattering.
This plot shows the 37 highest-energy events recorded by
IceCube. There are three fantastically high-energy events
observed above 1000 TeV (= 1 peta-electron volt) of deposited
energy. The highest-energy event is affectionately called “Big
Bird,” while the second and third highest-energy events are
called “Bert” and “Ernie.” Actually, all of the events on this plot



are named after Muppets.

Fig. 10.4 Deposited electromagnetic energy and declination of neutrino events detected by
the IceCube experiment between 2010 and 2012. Reprinted figure with permission from M.
G. Aartsen et al. [IceCube Collaboration], Phys. Rev. Lett. 113, 101101 (2014). Copyright
2014 by the American Physical Society.

If the Big Bird anti-muon deposited 2 PeV of energy in IceCube,
then what is the corresponding largest and smallest energy that
the initial anti-neutrino could have had?

(c) What are the corresponding maximum and minimum scattering
angles in degrees between the initial anti-neutrino and the
measured Big Bird anti-muon? Call the maximum angle θmax and
the minimum angle θmin. For simplicity, set the masses of the
proton and neutron to mN = 1 GeV. With any possible anti-
neutrino energy, is the momentum of the anti-muon close to the
direction of the anti-neutrino? You can safely assume that mN ≪
Eμ, so Taylor expanding would likely help.

This property of the scattering angle from part (c) is extremely
important for determining the astrophysical source of the high-energy
neutrinos observed in IceCube. In 2016, scientists on the Fermi



Gamma Ray Space Telescope found evidence that the neutrino that
was responsible for the Big Bird muon was created in a blazar, an
enormously energetic radiation source believed to be generated by a
supermassive black hole at the center of a galaxy.14

10.8 High-Energy Neutrino Cross Sections. The scattering of a high-
energy anti-neutrino off of a proton in the nucleus of a water molecule
through the process

(10.99)

can be described by the following interaction Lagrangian in the V −
A theory:

(10.100)

The corresponding Feynman diagram and matrix element is

(10.101)

Here, pν, pμ, pp, and pn are the momenta of the anti-neutrino, the anti-
muon, the proton, and the neutron, respectively. In this exercise, we
will use this matrix element to compute the scattering cross section
for this process to occur in the IceCube experiment.

(a) Calculate the squared matrix element  in
terms of the external particles’ four-momenta. You can safely
assume that the anti-neutrino and anti-muon are both massless
and the proton and neutron have identical masses equal to mN.



(b) The frame in which the anti-neutrino scattering takes place in
IceCube is where the proton is at rest. In this frame, show that
the squared matrix element can be written in terms of the anti-
neutrino energy Eν, the anti-muon energy Eμ, and the scattering
angle θ as

(10.102)

The scattering angle θ is the angle between the initial anti-
neutrino momentum and the anti-muon momentum.

Hint: You’ll want to exploit momentum conservation, pν + pp
= pμ + pn.

(c) To calculate the cross section, we then need to put this matrix
element into Fermi’s Golden Rule. Before that, though, we need
to evaluate two-body phase space in this weird frame.
Previously, we had evaluated it in the center-of-mass frame.
Because phase space is Lorentz invariant, we could just perform
an appropriate Lorentz transformation to get to this frame. That’s
not what we will do here, and instead let’s just recalculate phase
space in this frame. In the frame in which the proton is at rest,
show that the two-body phase space can be written as

To express the final integrals, we have written the integral over
the anti-muon momentum in spherical coordinates. Here, En is
the energy of the neutron.

(d) Because IceCube only measures the energy of the anti-muon, we
want to use the δ-function to integrate over the scattering angle
cos θ. Using the result for the muon energy from part (a) of
Exercise 10.7, show that the energy δ-function can be written for
cos θ as



(10.104)

Hint: You’ll need a Jacobian from the change of variables in
the δ-function.

(e) Combining the results for the matrix element and the two-body
phase space, show that the cross section σ for the process 

 can be written as

(10.105)

Hint: Don’t forget to enforce the δ-function for cos θ, and
remember what frame we are in for calculating the prefactors
in Fermi’s Golden Rule.

(f) By removing the integral over Eμ, Eq. 10.105 defines the cross
section for this scattering differential in the muon energy, Eμ. To
get the inclusive cross section, we need to integrate over Eμ,
which requires knowing the lower and upper bounds of the anti-
muon energy. Using the result for the muon energy from part (a)
of Exercise 10.7, determine the minimum and maximum muon
energies,  and  With these bounds, perform the integral,
and show that the total cross section is

Hint: What are the minimum and maximum scattering
angles and how are they related to the minimum and
maximum anti-muon energies?

(g) IceCube ran for three years to find three events which each
deposited more than a PeV of energy into the Antarctic ice.
Using the cross section in Eq. 10.106, approximately how many



PeV neutrinos passed right through IceCube during that time?
The total volume of the IceCube detector is about 1 km3, and the
density of ice is about 1000 kg · m−3.

Figure 10.5 is a display of the photomultiplier tube response
in the Big Bird neutrino event. The strings on this figure
correspond to the strings of photomultiplier tubes, while the
bubble region represents the detection of Čerenkov radiation.
Larger bubbles correspond to higher energy Čerenkov light
detected. I guess if you squint, it kind of looks like the head
of a Muppet, hence the naming scheme.

Fig. 10.5 Display of photomultiplier tube response in the IceCube experiment from the Big
Bird neutrino event that deposited 2000 TeV of energy. Reprinted figure with permission
from M. G. Aartsen et al. [IceCube Collaboration], Phys. Rev. Lett. 113, 101101 (2014).
Copyright 2014 by the American Physical Society.



10.9 Research Problem. In this chapter, we stated the CPT theorem, which
enforces that a Hamiltonian (or Lagrangian) is only Hermitian if it is
invariant under the combined action of C, P, and T. The requirement
of Hermitivity of the Hamiltonian means that time evolution is
unitary. Is the converse true? That is, is invariance under the
combined action of C, P, and T sufficient to prove that a theory is
unitary, with or without a well-defined Hamiltonian?
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The Mass Scales of the Weak Force

The V − A theory, for all its success, leaves much to be desired. It is severely
lacking from the perspective of QCD or electromagnetism. In the V − A
theory, we just postulate a four-fermion interaction, whose strength is
controlled by the Fermi constant, GF. In QCD and electromagnetism,
interactions of four fermions are mediated by spin-1 bosons: either the gluon
(in QCD) or the photon (in electromagnetism). If we are to understand this
weak force at a fundamental level, we want it to have a force carrier, that, at
most, communicates the force at the speed of light. Where is this force carrier
for the weak force?

This issue is just the tip of the iceberg. Just asking the question about what
these force carriers are demands that we confront serious problems that never
arose with QCD or electromagnetism. We will see that the structure of the V
− A theory requires the force carriers to be massive! This would seem to be at
odds with gauge invariance as a guiding principle, but there’s an out: we are
able to maintain gauge invariance at the cost of introducing new fields into
our theory. This procedure for giving mass to spin-1 force carriers is called
the Higgs mechanism, and its construction will be the focus of this chapter.
First, though, let’s enumerate the litany of problems with the V − A theory.



11.1 Problems with the V − A Theory
In the V−A theory, the interaction of, say, electrons, muons, and their
neutrinos is governed by the interaction Lagrangian

(11.1)

Recall that the dimensionality of the Fermi constant is GeV−2. With this
observation, we can use dimensional analysis to estimate the rate for
electron–muon collisions that produce neutrinos. The cross section for the
process e− + μ+ → νe + νμ must have dimensions of [energy]−2 (because it is
an area). The Feynman diagram for this scattering in the V − A theory is
proportional to GF:

(11.2)

and so the squared matrix element is proportional to  At energies well
above the muon mass, the rest of the dimensions in the cross section must be
made up by factors of the center-of-mass collision energy Ecm, as that is the
only other energy scale around. Therefore, in the high-energy limit, the cross
section must scale like

(11.3)

This is a bit weird: the cross section for electron–muon scattering diverges
as the center-of-mass energy gets large? This doesn’t make physical sense. At
higher energies, the electron and muon have smaller de Broglie wavelengths
and so it should be less likely for their wavefunctions to overlap and therefore



collide. This physical picture is consistent with our calculation of electron–
muon scattering via a photon. Recall that the cross section for the process e+

e− → μ+ μ− is

(11.4)

As expected, this vanishes as Ecm → ∞.
Okay, perhaps this is weird, but let’s stomach it and soldier on. Let’s just

assume that indeed there is some force carrier that is responsible for the
interactions in the V−A theory. In analogy with electromagnetism and QCD,
we would expect this force carrier to have spin-1 (like the photon and gluon)
and perhaps, if it is like the gluon, carry some of the charge which it
communicates. Somehow this spin-1 force carrier needs to be responsible for
the particular value of GF. More importantly, it needs to introduce the
appropriate dimensions of GF. Very oddly, this means that the force carrier
must be massive!

We can interpret GF as some sensitivity to a mass scale, according to its
dimensionality. That is, we can write

(11.5)

for some mass mF, that we might call the “Fermi mass” (an instance of the
Matthew effect). With GF = 1.17 × 10−5 GeV−2, the Fermi mass would be

(11.6)

Somehow the force carrier of the V − A theory needs to introduce a mass
scale of 292 GeV. This is problematic. When we discussed QCD, we argued
that the gluon must be massless because a mass term in the Lagrangian was
inconsistent with gauge invariance. If it is inconsistent with gauge invariance,
then Noether says that the corresponding charge is not conserved. Yet, this
seems to be what we need to do in the V−A theory to introduce a force carrier
that is spin-1 and has a mass at the scale of the Fermi mass. As Winnie-the-
Pooh might say, “Oh bother.”



11.2 Spontaneous Symmetry Breaking
How do we ever hope to get out of this conundrum? In the 1930s and 1960s,
many people including Ernst Stueckelberg,1 Yoichiro Nambu,2 Julian
Schwinger,3 Philip Anderson,4 François Englert, Robert Brout,5 Peter Higgs,6
Gerry Guralnik, Carl Hagen, Tom Kibble,7 Alexander Migdal, Alexander
Polyakov,8 and Gerardus ‘t Hooft9 provided insight and solutions to all of
these seemingly insurmountable problems. It’s typically called the Higgs
mechanism and predicts the existence of the Higgs boson, which was
discovered at the LHC in 2012. Only Higgs and Englert won the Nobel Prize
for this work in 2013.

In this section, we discuss the intuition for the Higgs mechanism, starting
with the situation in quantum mechanics. This provides insight in the case of
superconductivity in quantum field theory. Then, with this experience under
our belts, we identify properties of the weak force carriers and use the Higgs
mechanism to construct the complete theory, which is called the unified
electroweak force.

11.2.1 Quantum Mechanics Analogy

Harmonic Oscillator

To motivate the Higgs mechanism, let’s go back to quantum mechanics and
think about what our goals are. We claim victory of “solving” a quantum
system when we diagonalize the Hamiltonian; that is, we want to find the
eigenenergies of a quantum system. With these eigenenergies, we can then
fully classify the system and calculate the time evolution of an arbitrary state.
Perhaps the simplest interesting quantum system is the harmonic oscillator.
This is a quantum system in which a particle of mass m is placed in a
quadratic potential with spring constant k:

(11.7)

that looks like:



Importantly, note that the minimum of the potential is at x = 0. Therefore, to
study this system, we can start with the wavefunction localized around x = 0,
and then perturb it to identify the energy levels. The way in which you may
be familiar with doing this is by use of the raising and lowering ladder
operators. Any way you do it, you find that the eigenenergies are

(11.8)

where ω is the characteristic frequency of the harmonic oscillator, 

Double-Well Potential

Okay, that was easy; let’s make the system a bit more challenging. Let’s
consider the system with the potential

(11.9)

Here, V0 is the value of the potential when x = 0, and x0 is some characteristic
length or distance of the system. The potential looks like:



This is called a “double-well” potential for the obvious reasons. Note that,
like the harmonic oscillator, it is symmetric in x → −x: V(x) = V(−x), and
unlike the harmonic oscillator, has minima at x = ±x0, away from x = 0. Now,
to work to diagonalize the Hamiltonian, it doesn’t make any sense to consider
a wavefunction localized about x = 0 and then perturb. Any wavefunction that
is localized about x = 0 (or any ball placed at or near x = 0) will just roll down
the potential, and land in one of the two potential wells located at x = x0 or x
= −x0. That is, the true ground state is described by a wavefunction localized
at either x = x0 or x = −x0, and not about x = 0.

There’s actually something weird about this, too. Unlike the harmonic
oscillator, this potential has two, degenerate (equal energy) minima.
Expanding about either of these minima is an equally valid description of the
low-energy eigenvalues. Which one we pick or is picked for us is random.
Note, however, that while the potential V(x) is symmetric for x → −x, if we
pick, say, the minimum located at x = x0 to expand about, our description of
the system is no longer symmetric in x → −x. This is a manifestation of a
phenomenon called spontaneous symmetry breaking: our complete
quantum system (in this case the potential V(x)) has a symmetry for x → −x.
However, our description of the ground state does not, because we happen to
choose the minimum at x = x0 about which to expand. By making this random
choice, we have “spontaneously” broken the x → −x symmetry.

Let’s see mathematically what this expansion about x = x0 means. To
expand about x = x0, we will write x = x0 + δx, for some fluctuation position
δx. With this expansion, the potential becomes



(11.10)

This expression for the potential no longer obviously has the x → −x
symmetry. In particle physics, we typically say that the symmetry is no
longer manifest. However, it is still there; we just have to translate the x →
−x symmetry to the fluctuation δx. For δx → −δx − 2x0, the potential
becomes

(11.11)

which corresponds to expanding about the minimum at x = −x0.
One more thing to note about this potential is its expansion for small δx. In

the limit where δx ≪ x0, we have

(11.12)

where we ignore terms at higher orders in δx/x0. This is just the harmonic
oscillator potential with

(11.13)

The ground state energy in this minimum is then

(11.14)

Note that this is non-zero.

“Mexican Hat” Potential

Okay, enough in one dimension, let’s move to two-dimensional quantum
systems. Let’s take this double-well potential in one dimension and just rotate
it about the vertical axis. In two dimensions this is



(11.15)

This looks like a sombrero and so is colloquially called the Mexican hat
potential:

Again, like the double-well potential, the minimum of this potential is not
located at the origin x = y = 0, but displaced from the origin, where 

 So, just like the double-well potential, we should expand the
potential about the minimum. To do this, note that the potential is radially
symmetric, so we can re-express coordinates x and y in terms of r, the
distance from the origin, and ϕ, the angle about the origin. That is,

(11.16)

In these coordinates, the potential is

(11.17)

with no dependence on ϕ.
In rewriting the potential in terms of r and ϕ, we had to choose a value of

ϕ. Any choice of ϕ ∈ [0, 2π) is equally valid in which to calculate energies,
but we picked a particular value. This is like what we did for the double-well
potential: we had to pick (arbitrarily) one of the wells in which to expand.
However, in this case, the angle coordinate is continuous: by choosing some



ϕ, we spontaneously break the continuous rotational symmetry of the system.
This has extremely cool consequences. Let’s consider the Schrödinger
equation for the wavefunction in the r, ϕ coordinates, ψ(r, ϕ). The
Schrödinger equation for this system is

(11.18)

This can be solved by separation of variables, where ψ(r, ϕ) = ψr (r)ψϕ (ϕ).
Doing this, we find the two differential equations

(11.19)

(11.20)

where α is the separation-of-variables constant. Now, we can expand about
the minimum of the potential and write r = r0 + δr. Only keeping the lowest-
order terms in this expansion, the Schrödinger equations become

(11.21)

(11.22)

With this expansion, the Schrödinger equation for the radial wavefunction
ψr just turns into a harmonic potential with an effective spring constant of

(11.23)

which is similar to what we found with the double-well potential. This then
implies that the effective energy eigenvalues of the radial wavefunction are
just those of the harmonic oscillator, at least for the low-lying states for
which our approximation that r only has small fluctuations about r0 is a good



approximation. In particular, the effective radial ground state energy  is

(11.24)

The total energy of the system E when it is in the radial ground state is then

(11.25)

Note that this energy is at least  and the precise value depends on the
size of α.

The equation for ψϕ is much more interesting than that for ψr. In these
expressions, α is some constant from separation of variables. In the ψϕ
equation,  has the interpretation as the energy of the state corresponding
to ψϕ. We have the boundary condition that ψϕ (ϕ) = ψϕ (ϕ + 2π), and so the
solutions to Eq. 11.22 can be written as

(11.26)

Here, φ is the angle about which we expand the wavefunction (that is, what
we define to be the origin). This angle can be anything, φ ∈ [0, 2π), and the
value we choose does not affect any observable quantities. For n > 0, these
wavefunctions correspond to an energy

(11.27)

that is non-zero; it takes finite energy to excite the system to these states.
These energy states are identical to those for the infinite square well of width
πr0. However, because the domain of the angle ϕ ∈ [0, 2π) is compact, there
is a normalizable solution for α = 0. It is the true ground state:

(11.28)

This state has zero energy, and as such is “always” there. No injection of



energy into the system is needed to get to this state.
Note the distinction between this system and the double-well potential. For

the double well, we also had to spontaneously break the x → −x symmetry,
but this is not continuous. In that case, to access any state required a positive
energy injection into the system. In the next section, we will do the same
exercise in quantum field theory. States in quantum mechanics correspond to
particles in quantum field theory. That is, the zero-energy angular state we
found in the quantum mechanical example will correspond to a particle that
can have zero energy. If there is a particle that can have zero energy, then it
must be massless; otherwise its energy will be at least the mass. The
existence of massless particles corresponding to spontaneously broken
continuous symmetries is known as Goldstone’s theorem, and we’ll see how
it works and how we can exploit it.

11.2.2 Goldstone’s Theorem for the Mexican Hat Potential
All of this was background to prepare you for the situation in quantum field
theory, and how this can be exploited to provide mass to spin-1 bosons. The
quantum field theory analogy to the quantum mechanical two-dimensional
radial potential is a complex spin-0 scalar field ϕ(x), with the Lagrangian

(11.29)

Here, the scalar potential is V(ϕ) = λ(|ϕ|2 − v2)2. The value v is the minimum
of the potential; that is, when |ϕ| = v, the potential is 0. v is called the
vacuum expectation value or vev, because it is the state that the field ϕ will
assume in the vacuum, with no injection of energy. We denote this by 〈|ϕ|〉 =
v, meaning that the average absolute value of ϕ in the vacuum is v. λ is the
quartic coupling, and should be positive so that energy is always non-
negative.

This Lagrangian as it stands is pretty weird. Let’s expand out the potential

(11.30)

Don’t worry about the |ϕ|4 or λv4 terms for now; just focus on the |ϕ|2 term
and the kinetic term. Ignoring these terms in the Lagrangian means that we
are expanding about the point where ϕ = 0. Varying the Lagrangian with



respect to ϕ∗ yields the Klein–Gordon equation,

(11.31)

which has the corresponding energy–momentum relation in special relativity
of

(11.32)

Huh? A negative mass squared? This is not good! As we argued in quantum
mechanics, this just means that you’re expanding about the wrong point. We
don’t want to expand about ϕ = 0, but rather about |ϕ| = v.

To do this, let’s write

(11.33)

for two real scalar fields r(x) and θ(x). Note that the conjugate field is

(11.34)

Plugging these into the Lagrangian and simplifying, we find

(11.35)

Now, the potential is purely a function of the field r, with no θ field.
Expanding in the small-r-field limit, where r ≪ v, this Lagrangian reduces to

(11.36)

That is, the field r(x) has a mass of  while the field θ is
massless. This is a manifestation of Goldstone’s theorem.10

Goldstone’s theorem states that when a continuous symmetry is
spontaneously broken, there exist zero-energy states in the spectrum of the



Hamiltonian. That the field θ(x) is massless is a consequence of the fact that
we had to spontaneously choose a value for θ, which broke the rotational
symmetry. This is a continuous symmetry, and so we find that the field θ(x) is
massless. That is, there is no minimum energy required to excite particles
from the θ field. This is exactly like what we found in the quantum
mechanical example. In this system, we would call the θ field the Goldstone
boson.

11.2.3 Higgs Mechanism in Superconductivity
Now for the main event. Let’s see how we can use this property of
spontaneous symmetry breaking to give a spin-1 boson a mass. In the
example below, we just consider the simple case of giving the field ϕ an
electric charge; therefore, we will show how to give the photon a mass and
maintain gauge invariance. In the next section, we will be able to apply this
insight to the W and Z bosons, the force carriers of the weak force.

Example 11.1 How does the Higgs mechanism give a mass to the photon?

Solution
The first thing we need to do is to couple the scalar field ϕ to the photon. To
do this, we just replace the partial derivative by the covariant derivative:

(11.37)

where e is the electric charge and Aμ is the photon field. The Lagrangian then
becomes

(11.38)

Recall that the field strength for electromagnetism is

(11.39)

This Lagrangian is invariant under the U(1) gauge transformations

(11.40)



Here, α(x) is an arbitrary function of the spacetime coordinate x.
Now, as we did in the case when the scalar field was uncharged, we need

to expand about the minimum of the potential to ensure that all fields have
non-negative mass-squared. Again, we write

(11.41)

Unlike in the previous case, we can simplify the expression of ϕ(x) by
exploiting gauge transformations. The field θ(x), the Goldstone boson, can be
eliminated at the expense of picking a gauge; that is, choosing a particular
α(x). If we choose

(11.42)

then by performing a gauge transformation we have

(11.43)

We have eliminated the Goldstone boson! By choosing and fixing a gauge,
we seem to have broken the symmetries of electromagnetism. However, this
breaking was just spontaneous, which means that the symmetries of
electromagnetism are still there, just not manifest. Thus, charge is still
conserved, just not manifestly so when expanding in the ground state of the
potential well.

In this gauge, let’s now evaluate the Lagrangian. We have

(11.44)

and so



This Lagrangian is insane. We call the field h(x) the Higgs field. Expanding
its interactions to quadratic order, we have

(11.46)

and so the Higgs field has a mass of  The weirder part of this
Lagrangian is that which involves the photon. Expanding the photon part to
quadratic order, we find

(11.47)

The term e2 v2 Aμ Aμ is a mass for the photon! What?!? The process of
spontaneous symmetry breaking effectively has successfully given a mass to
the photon. This mass is  and so is controlled by the electric
charge e and the vev.

Note also that the Lagrangian of Eq. 11.45 describes a photon with three
degrees of freedom; that is, there are three components of Aμ that propagate.
This is different from the case of a massless photon that only has left- and
right-handed helicity. Recall that for a massless photon, the potential degree
of freedom in the direction of momentum was removed by a gauge
transformation. In the case at hand, however, in expanding the scalar field in
its lowest energy state, we have spontaneously broken the gauge symmetry
and therefore cannot use it to eliminate the third degree of freedom. This third
degree of freedom was formerly the Goldstone field, θ(x). Because the
photon acquired mass through the existence of the Goldstone field θ(x), we
say that the photon “ate the Goldstone boson and became fat,” that is,
massive.



The process of spin-1 gauge bosons acquiring a mass through spontaneous
symmetry breaking with a scalar field is called the Higgs mechanism. This
particular application describes superconductivity in the Bardeen–Cooper–
Schrieffer (BCS) theory.11 The vacuum expectation value of the scalar field
〈|ϕ|〉 is called the order parameter of the symmetry breaking. If 〈|ϕ|〉 = 0, the
symmetry is preserved, and the photon is massless. If 〈|ϕ|〉 = v ≠ 0, the gauge
symmetry is spontaneously broken, and the photon is massive. The
Lagrangian with the massive photon and Higgs boson field is still gauge
invariant and so electric charge is still conserved. However, in the expansion
about the vev this gauge symmetry is not manifest, and so the individual
states of the system will not appear to conserve charge (i.e., the photon will
have a non-zero mass).

So, we know how to give a spin-1 boson a mass that is consistent with
gauge invariance of the system. We will use this knowledge to provide the
carriers of the weak force with masses that can account for all of the
subtleties we identified with the V − A theory.



11.3 Electroweak Unification
In the previous section, we introduced spontaneous symmetry breaking as a
feature of the ground state of a system to break a symmetry of the theory.
Applying spontaneous symmetry breaking to a gauge theory, coupling a
scalar whose vacuum breaks the symmetry is the Higgs mechanism. A gauge
boson can acquire a mass if it is coupled to a scalar field that acquires a
vacuum expectation value, or vev.

We argued that, if the weak force were to have spin-1 boson force carriers,
then those force carriers are necessarily massive. This is a consequence of the
fact that the Fermi constant GF that appears in the V − A theory is
dimensionful. Massive force carriers are unfamiliar in our experience with
electromagnetism or QCD, but with the Higgs mechanism, we are equipped
to understand how this could work. In this section, we will use the Higgs
mechanism to understand what the weak force carriers are.

11.3.1 Properties of the Weak Force Carriers
To begin, we need to enumerate what the properties of the force carrier(s) of
the weak force are and are not. Recall that decay of the neutron corresponds
to the process

(11.48)

or, in terms of the fundamental quarks,

(11.49)

The interaction that describes this decay in the V − A model is

(11.50)

This interaction tells us many things. First, it tells us that the force carrier
must be colorless: electrons and neutrinos have no color, and the two factors
in the interaction are just multiplied. So, the color of the up and down quarks



does not flow outside of their interaction. Next, the force carrier must have
electric charge. The sum of the charges of the neutrino and electron is −1 (in
terms of the fundamental charge e) and the charge of the up and anti-down
quark is +1. The total charge of this interaction is 0, which ensures that it is
electromagnetically gauge invariant and conserves charge. Therefore,
whatever particle is mediating this interaction must have electric charge ±1.
We also already know that this mediating particle must be spin-1 and have a
mass comparable to  For future reference, we will refer to this particle
(until we give it a proper name) as the charged current.

But wait, there’s more. Let’s go back to our analysis of e+ e− scattering,
say e+ e− → μ+ μ−. At low energies, say Ecm ≃ 1 GeV, this scattering is
extremely well described by the interaction mediated by electromagnetism.
The masslessness of the photon means that the only energy scale that the
cross section can depend on is the center-of-mass collision energy:

(11.51)

However, we know that as we increase the center-of-mass collision energy
this 1/E2

cm dependence changes, and we observe a peak, or a resonance, in
the cross section, as a function of Ecm. That is, we see something like that
shown in Fig. 11.1, where there is a resonance around 91 GeV. This bump in
the cross section clearly cannot be ascribed to the photon and
electromagnetism, because there is nothing special about 91 GeV in
Maxwell’s equations. Thus, we call it a new particle, the Z boson. However,
for now, we will refer to it as the neutral current, as it must be neutral (like
the photon) and is massive.



Fig. 11.1 Plot of the e+ e− → μ+ μ− cross section in nanobarns as a function of center-of-mass collision
energy  The solid black points are data collected from the ALEPH experiment at LEP. Reprinted
from Phys. Lett. B 399, R. Barate et al. [ALEPH Collaboration], “Study of the muon pair production at
center-of-mass energies from 20 GeV to 136 GeV with the ALEPH detector,” 329 (1997), with
permission from Elsevier.

Additionally, the fact that both the photon and the neutral current mediate
the scattering e+ e− → μ+ μ− suggests that they are related somehow. Because
the photon and the neutral current are intermediate particles in the e+ e− → μ+

μ− collisions, we must sum their contribution to the cross section at the
matrix element or Feynman diagram level. There is, in principle, no
measurement we can do to distinguish what intermediate particle mediated
the interaction. Apparently, the photon and neutral current mix into one
another quantum mechanically. To do this, they must share (some) quantum



numbers, and if they do, are somehow intimately related. More on this in a
second.

There’s another thing we can look for in an e+ e− collider and that is the
process e+ e− → νe νe. In our detector, because it is incredibly hard to detect
neutrinos, we would see electrons and positrons colliding and producing
nothing. Experimentally, seeing “nothing” is extremely hard to calibrate and
determine uncertainties, so the standard procedure is to let there be an
additional final-state particle. In e+ e− collisions, it is most natural to consider
this additional particle to be a photon; thus, we will look for the process e+ e−

→ νe νe γ in data. What we would actually see in our experiment, however, is
just e+ e− → γ, as the neutrinos are unobservable. As the initial state has no
net momentum, we would observe that the final state would appear to not
conserve momentum. The missing momentum or energy that is needed to
conserve momentum of the final state is just missing transverse momentum
(MET), and attributed to the neutrinos. That is, to identify neutrino
production in e+ e− collisions, we look for e+ e− → γ + MET events in our
detector.

The fundamental e+ e− → νe νe scattering can be mediated by the charged
current, and the photon can be produced as radiation from the electron or
positron. The Lagrangian that governs the interaction of the electron with the
neutrino is

(11.52)

for example. That is, the charged current turns electrons into neutrinos. This
interaction cannot be mediated by electromagnetism, because the neutrino is
electrically neutral. However, it may be mediated by the neutral current, if the
neutral current couples to neutrinos. Just as we did with e+ e− → μ+ μ−, we
can measure the cross section for the observed process of e+ e− → γ +MET as
a function of the center-of-mass collision energy, Ecm. A plot of this is shown
in Fig. 11.2, and one sees that around Ecm = 91 GeV or so the cross section
changes significantly. This then suggests that the neutral current mediates the
process e+ e− → νe νe and so is somehow related to the charged current.



Fig. 11.2 Plot of the e+ e− → γ + MET cross section in picobarns as a function of center-of-mass
collision energy. The data were collected from the OPAL experiment at LEP. Reprinted by permission
from Springer Nature: Springer Nature Z. Phys. C “Measurement of single photon production in e+ e−

collisions near the Z0 resonance,” R. Akers et al. [OPAL Collaboration] (1995).

So, these observations have told us that four bosons – the photon, the
neutral current, the +1 charged current, and the −1 charged current– are
related to one another. Apparently, three of these bosons (the neutral and
charged currents) are massive, while the photon is massless. So, we need to
develop a theory in which these bosons are related and three of them get mass
via the Higgs mechanism. This fundamental theory is called the unified
electroweak force, as it describes electromagnetism and the weak force in a
unified manner.



Let’s follow our noses to see if we can construct a sensible theory of this
unified electroweak force. Because it has worked in the past (for
electromagnetism and QCD), let’s try to figure out what the gauge symmetry
of this theory is. To do this requires identifying the relationship between the
gauge group and the number of force-carrying bosons. In our discussion of
QCD, we identified the SU(3) color symmetry. We argued that SU(3) has
eight basis matrices Ta, for a = 1, ..., 8. We determined this by considering
how many free parameters there were in an SU(3) matrix. Again, a general 3
× 3 complex matrix U has 18 real parameters. Enforcing the unitary
constraint U† U = I fixes nine parameters. Further enforcing the unit
determinant is one more constraint. Therefore, there are eight basis matrices
of SU(3). For the group SU(N), there are in general N2 − 1 basis matrices, by
extension of this argument.

So, for the group SU(N), there are in general N2 − 1 force-carrying bosons.
To describe the electroweak force, we need four. N2 − 1 for integer N cannot
be 4, so the approach that we used for QCD must be generalized. Note,
however, that if we do not impose the unit determinant constraint, then we
have the group U(N), which has a total of N2 basis matrices. 22 = 4 and so the
simplest group that has four gauge bosons is U(2), the group of unitary 2 × 2
matrices. This group can be equivalently expressed as SU(2)⊗U(1)≃U(2),
where ⊗ means the direct product of the groups SU(2) and U(1). So, this is
what we will work with as the electroweak gauge group. We call the SU(2)
part weak isospin and the U(1) part hypercharge. Let’s now see how the
weak isospin and hypercharge combine to produce the charged and neutral
currents, and the photon. The theory that we will develop in the rest of this
chapter was first described by Sheldon Glashow, Steven Weinberg, and
Abdus Salam.12

11.3.2 Spontaneous Breaking of Electroweak Symmetry
Our first goal will be to spontaneously break this gauge symmetry down to
just electromagnetism using the Higgs mechanism. For compactness, we
denote SU(2) weak isospin by SU(2)W and the U(1) hypercharge by U(1)Y.
We will call the gauge bosons of the weak isospin  and 
while the gauge boson of hypercharge U(1)Y will be Bμ. For the Higgs



mechanism, we need to introduce the scalar field that can do the symmetry
breaking. This field must couple to all of the electroweak gauge bosons, and
so must carry weak isospin and hypercharge. The simplest possibility is to
have the field  be in the fundamental representation of SU(2)W, which is a
two-component vector:

(11.53)

where ϕ+ and ϕ0 are complex scalar fields and the + and 0 notation will
become clear in a bit. This field therefore has four degrees of freedom
because a complex number has a real and an imaginary part. Such a field is
also called a doublet of SU(2)W. It transforms under an SU(2)W⊗U(1)Y gauge
transformation as

(11.54)

where  are the Pauli sigma matrices (the basis matrices of the
fundamental representation of SU(2)), and  and β are parameters that
determine the gauge transformation. The hypercharge Y of this boson is
defined to be Y = 1.

Just as we did with QCD, we need to introduce a covariant derivative that
enables gauge-invariant interactions between this scalar field and the
electroweak gauge bosons  and Bμ. This covariant derivative is

(11.55)

In this expression, gW and gY are the coupling constants of the weak isospin
and the hypercharge, respectively. The index a = 1, 2, 3 ranges over the three
basis matrices of SU(2). Note that the factors of 1/2 in the covariant
derivative come from the identification of the scalar in the fundamental
representation of SU(2)W and the assignment of its hypercharge of Y = 1. It
then follows that the gauge-invariant Lagrangian for the interactions of the
scalar with the weak isospin and hypercharge is



(11.56)

Now that we know the interactions of the scalar field with the electroweak
bosons, we can work to spontaneously break the symmetry. To do this, we
need to give the field a vev, which can be accomplished by writing down a
gauge-invariant potential. With the vev by convention  the
potential is

(11.57)

where λ is the quartic coupling. Note that  is gauge invariant. This is

(11.58)

A gauge transformation can rotate the field components ϕ+ and ϕ0 into one
another, but cannot change the magnitude.

Our next step is to expand the field  about the vev. To do this, we express
the scalar field as

(11.59)

where r1 (x), r2 (x), θ1 (x), and θ2 (x) are real scalar fields, with each having
only one degree of freedom. The average value of each of these fields is 0,
and so indeed the vev of the field  is

(11.60)

as required from the form of the potential, Eq. 11.57. To describe the unified
electroweak theory, we need to give three force-carrying bosons a mass (the
neutral and charge currents). Thus, we need to eliminate three of the fields in 



 with an appropriate SU(2)W⊗U(1)Y gauge transformation. As there are three
basis matrices of SU(2)W (and therefore three gauge transformation
parameters α1, α2, and α3), we will just use SU(2)W to remove these three
scalar fields. In general, though, one could use any three linear combinations
of the  and β parameters.

An arbitrary SU(2) matrix U can be written with one rotation angle ψ and
two phases χ1 and χ2:

(11.61)

It is straightforward to verify that this matrix does indeed satisfy the unitarity
requirement and has determinant 1. In Exercise 11.4, you will relate the
parameters in this form of an SU(2) matrix to the gauge transformation
parameters α1, α2, and α3 in the form of Eq. 11.54. This matrix rotates away
three of the four real scalar fields in  That is, by acting with this matrix, we
want to produce the form

In this final form, the real scalar field that remains, H(x), is called the Higgs
boson.

Let’s see how this works. Performing the matrix multiplication, we have

(11.63)

From the form of Eq. 11.62, we want to eliminate all phases from the second
entry of the vector  This then forces us to set



(11.64)

Inserting this into the first entry, we then have the requirement that

(11.65)

or, removing the overall phase factor, that

(11.66)

The ψ that solves this equation is

(11.67)

With these results, we can then evaluate the second entry of  and equate
it to the expression in Eq. 11.62. We then find

(11.68)

In terms of the original fields r1 (x) and r2 (x), the Higgs boson H(x) is
therefore

(11.69)

The Higgs boson field H(x) describes the small deviations of the  field from
its vev. With the interpretation that H(x) is relatively small, we can Taylor
expand the square-root in r1 (x) and r2 (x):

(11.70)

While this relationship is interesting, from now on we will just use the
expression for  from Eq. 11.62, knowing that we can in general perform an
SU(2)W gauge transformation to reduce to this form. Importantly, once the
dust has settled, we have used up three gauge transformation parameters (α1,



α2, and α3) to do this. Thus, we have successfully spontaneously broken the
SU(2)W⊗U(1)Y symmetry and we should find that three of the four force-
carrying bosons of this theory have a mass. Let’s do that now.

11.3.3 The Broken Weak Theory
With this form of the scalar  that spontaneously breaks the SU(2)W⊗U(1)Y
symmetry, we can re-insert it into its Lagrangian kinetic term. We have

(11.71)

The notation  means that the partial derivative acts to the left, on the Higgs
field. Our focus for now is on determining the masses of the force-carrying
bosons  and Bμ. To do this, we set the Higgs field H(x) to zero, and
therefore the partial derivatives vanish. Then, the Lagrangian becomes

(11.72)

Now, we need to evaluate the matrix multiplication. Using the explicit
expressions for the sigma matrices, the matrices of gauge bosons can be
written in components as

(11.73)

Here, the term with Bμ is proportional to the 2×2 identity matrix, I.
Performing the matrix multiplication, we have



(11.74)

We then just need to take the dot product of this vector with its Hermitian
conjugate to determine the mass terms in the Lagrangian. We then find

(11.75)

Awesome! This then tells us which of the force-carrying bosons has a
mass. We call the linear combinations of the weak isospin fields

(11.76)

the positively and negatively charged W bosons. They correspond to the
charged current that we had identified in the V − A theory. Their mass term in
the Lagrangian is

(11.77)

with a mass of  The other linear combination of weak isospin and
hypercharge gauge fields that gets a non-zero mass is

(11.78)

which is called the Z boson. It corresponds to the neutral current that we
identified as a resonance in e+ e− scattering. Its mass term is

(11.79)



with a mass of  The linear combination of fields that does not
get a mass via the Higgs mechanism is

(11.80)

which is called the photon of electromagnetism. Extremely importantly, note
that because the photon is still massless, it has a corresponding manifest
gauge symmetry, even in this broken theory. This in turn implies that electric
charge is (still!) conserved when expanding about the ground state of the
potential for the scalar 

This theory with W, Z, and photon bosons is called the broken theory, as
the W and Z bosons are massive. Interactions between particles of the
Standard Model with these electroweak bosons are still implemented via the
covariant derivative (just as in QCD or electromagnetism). However, it is
useful to express the covariant derivative in terms of the W, Z, and photons
by just inverting their linear combinations. The weak isospin and hypercharge
gauge bosons are thus

(11.81)

Inserting these expressions into Eq. 11.55, the covariant derivative acting on
the scalar doublet  is then

(

If Aμ is to be the photon, then the coefficient in the covariant derivative must
be the electric charge of the particle to which it couples. The fundamental



unit of electric charge e is thus

(11.83)

The matrix in front of this expression for e in Eq. 11.82 is therefore the
charge of  in units of e. Note that this matrix is

(11.84)

Then, acting this covariant derivative on the doublet  we find

(11.85)

That is, the complex scalar field ϕ+ has electric charge +e, while the field ϕ0
is electrically neutral. This justifies the + and 0 notation. For general doublets
of SU(2)W (which include the electron and the electron neutrino, and the up
and down quarks), the coupling to the photon is determined by the value of
the hypercharge Y for that doublet. For a general doublet, then, the covariant
derivative is The electric charge of the particle in the upper component of an
SU(2)W doublet is  while the charge of the lower component particle
is  We will study many examples of SU(2)W doublets in
Chapter 12.

(

11.3.4 Four Predictions of the Broken Weak Theory
This electroweak theory and its spontaneously broken gauge symmetry
makes a huge number of predictions. In the rest of this chapter, we will
review just four of them, and discuss more in later chapters. The power of the



electroweak theory is that the interactions of the electroweak force-carrying
bosons are defined by three parameters: the couplings gW and gY, and the vev,
v. The fact that we will be able to consistently make predictions of four
measurable quantities from these three parameters is a detailed test of the
theory.

Mass of the Z Boson, mZ

Numerous times throughout this book we have already seen that the e+ e−

collision cross section exhibits a resonance near a center-of-mass collision
energy of 91 GeV. We attribute this resonance to a new particle, the Z boson,
which is electrically neutral. According to the PDG, the mass of the Z boson
is mZ = 91.18 GeV and the electroweak theory prediction for mZ from Eq.
11.79 is

(11.87)

Value of the Electric Charge, e

The electroweak theory predicts the strength with which the photon couples
to electrically charged particles. Within quantum electrodynamics, this is just
the fundamental electric charge, e, which is related to the fine structure
constant α as

(11.88)

where we have used the value of α from the PDG (truncated to four
significant figures). From Eq. 11.83, the electroweak theory predicts that the
fundamental electric charge e is

(11.89)

Mass of the W Boson, mW

Determining the mass of the W boson is a harder task than for the Z boson.



Because the W boson carries electric charge, the process e+ e− → W+, for
example, in which electrons and positrons are collided and create a W boson,
which subsequently decays, does not exist. So, we have to change our
strategy. While we cannot create W bosons singly in e+ e− collisions, we can
produce pairs of them, if the center-of-mass collision energy Ecm is large
enough. That is, the process

(11.90)

is completely allowed; for example, the electric charge of the initial and final
state is 0. Now, however, when scanning over Ecm we won’t see a beautiful
resonance in the cross section which makes the existence of a particle very
obviously known (as we saw for the Z boson). So, what do we see?

Let’s work to calculate the cross section for WW production in electron–
positron collisions, σ(e+ e− → W+ W−). Actually, all we will do here is
estimate this cross section; we won’t explicitly calculate Feynman diagrams,
but this will nevertheless provide us with a concrete prediction. To calculate
the cross section, Fermi’s Golden Rule tells us that

(11.91)

Here, we have implicitly used many of the results we derived in Chapters 4
and 6. Π2 is two-body phase space (corresponding to the momentum
configurations of the two W bosons) and M(e+ e− → W+ W−) is the matrix

element for this process, that we could calculate with Feynman diagrams.
Using the simplification from Example 4.2 of Chapter 4, we are able to
express the integral over two-body phase space as a single integral over the
scattering angle, θ:

(11.92)

Recall that the scattering angle θ is the angle that, say, the W+ boson makes
with the initial colliding electron. By momentum conservation, the W+ and W
− bosons have equal and opposite momenta, whose magnitude is given by 



At this point, to honestly evaluate the cross section, we would need to
compute the scattering angle θ dependence in the matrix element M(e+ e− →

W+ W−). However, for our purposes, it will turn out that we don’t care about
the overall normalization of the cross section. With that in mind, the squared
matrix element |M(e+ e− → W+ W−)|2 is just some function of the scattering

angle, θ. Thus, its integral will just be some number. Let’s call this number
cint, where

(11.93)

cint might have dependence on masses or energy scales, but let’s ignore that
for now. For on-shell W bosons, their magnitude of momentum  is just the
quadrature difference of their energy EW and mass mW:

(11.94)

For center-of-mass collision energy Ecm, EW is just half of Ecm. Therefore,

(11.95)

Using these results, we can write the cross section as

(11.96)

This provides a concrete prediction for the cross section σ(e+ e− → W+ W−)
as a function of the center-of-mass energy Ecm. For Ecm < 2mW, the cross
section is zero, because there isn’t enough energy to create two W bosons in
the final state. For Ecm > 2mW, the shape of the cross section is determined by
Eq. 11.96. The value of Ecm at which the cross section is first non-zero is
called the threshold energy. This cross section can be measured in data and
the value of the threshold energy determined, which consequently provides a
measurement of the mass of the W boson. Figure 11.3 shows a plot of



combined results from all four experiments at LEP (ALEPH, DELPHI, L3,
and OPAL) of the e+ e− → W+ W− cross section as a function of Ecm. On this
plot, we have also plotted the Ecm dependence of the cross section as
determined by Eq. 11.96 (and multiplied by an appropriate normalization
constant) with the W boson mass set to its PDG value, mW = 80.38 GeV. The
threshold energy is clearly evident, and the prediction of Eq. 11.96 agrees
remarkably well with the data. The agreement can be improved by a more
detailed analysis, but the fact that this simple calculation agrees so well with
data is impressive. This can then be used with the relation derived above to
fix another function of the parameters of the electroweak theory:

(11.97)

Fig. 11.3 A plot of the cross section in picobarns as a function of the center-of-mass energy Ecm for the



process e+ e− → W+ W− collected at the four experiments at LEP. The dashed curve is the prediction
from Eq. 11.96 with mW = 80.38 GeV. The data are from a table and are reprinted from Phys. Rept.
532, S. Schael et al. [ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations],
“Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP,” 119
(2013), with permission from Elsevier.

Fermi Constant, GF

The final prediction we make within the electroweak theory is of the Fermi
constant, GF. In the previous chapter, we calculated the lifetime of the muon
in the V − A theory, using the accepted value of GF. Perhaps a better way to
go about it, especially with our current goal, is to measure the lifetime of the
muon, and use that measurement to determine the value of GF. With this in
mind, we would like to calculate the lifetime of the muon within the
electroweak theory, and then we can identify the relationship between the
parameters gW, gY, and v and the value of GF. The first thing we need to do,
though, is to understand how W bosons (that is, the charged current) couple to
fermions, like the muon and electron.

As with all gauge bosons, the W bosons couple to fermions through the
covariant derivative, so we should see how this works. The first thing we
need to do is to determine what the appropriate SU(2)W doublet is with which
the W boson interacts. From the discussion immediately after Eq. 11.86, the
upper and lower components of an SU(2)W doublet have electric charge that
differs by one unit. Additionally, they must have the same value of spin,
because SU(2)W is an internal symmetry (i.e., it has nothing to do with the
Lorentz group). A natural doublet then is the left-handed electron eL and its
associated neutrino, νeL. This is called the electron doublet and is written in
vector form as

Then, by setting the hypercharge Y of this doublet to be Y = −1, we correctly
fix the electric charge of the neutrino to be Qν = 0, and for the electron Qe =
−1 (in units of the fundamental charge, e).

Then, the Lagrangian for this left-handed electron doublet is
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where Dμ is the electroweak covariant derivative, Eq. 11.86, with Y = −1. In
this expression, the matrix  is the usual Pauli matrix four-vector that acts
on the individual spinors eL and νeL. As we are interested in their coupling to
the W bosons, let’s just focus on the W boson contribution to the covariant
derivative. We have

(11.99)

Again, one has to be somewhat careful here with notation: the σ1 and σ2
matrices that multiply the W bosons act on the electron doublet as a vector.
The matrix with the W bosons is then

(11.100)

using the explicit expressions for the sigma matrices. Performing the matrix
multiplication, the interaction of the electron doublet and the W bosons is
then

(11.101)

The σ matrices that remain act on the two components of the left-handed
spinors. Note that, importantly, both of these terms individually have zero net
electric charge. Thus, a W boson turns an electron into an electron neutrino
with strength 

While we have just considered the left-handed electron doublet, essentially
the same analysis goes through for the left-handed muon doublet. The muon,
and its associated muon neutrino, couple to the W boson in a similar way as
do the electron and its neutrino:

(11.102)



A prediction of the electroweak force is lepton universality: all left-handed
lepton doublets (electron, muon, or tau) couple to W bosons with the exact
same strength. We’ll use these results in the following.

Now that we have identified that the W boson can couple muons, electrons,
and their neutrinos, we can work to calculate the muon decay rate in the
electroweak theory. The Feynman diagram for this decay, with an
intermediate W boson, is

Note that the intermediate, virtual W boson is negatively charged: the charge
of the muon flows through the W boson to the final-state electron. To
evaluate this Feynman diagram, we know the wavefunctions of the external
fermions, and from Eqs. 11.101 and 11.102 we know what the vertices with
the W boson are. The remaining thing we need in order to calculate this
Feynman diagram is the propagator of the intermediate W boson,  In
Section 4.3.2, we argued that the propagator of the massless photon was
proportional to 1/q2, where q is the momentum that flows through the photon.
The W boson, however, is massive, and so its propagator will be different.
So, what is it?

First, if the W boson were massless, then its propagator would be the same
as that of the photon. That is,

(11.103)

On the other hand, if the momentum flowing through the W boson goes to 0,
then it still has a characteristic Compton wavelength, as determined by its
non-zero mass, mW. That is, we expect that
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So, in general, we expect that the W boson’s propagator has the form

(11.105)

for some proportionality constant ζ.
To determine ζ, let’s consider the case when q2 is close to  In that case,

because q2 > 0, we can go to a frame in which q2 = E2, where E is the energy
of the intermediate W boson. Further, let’s write

(11.106)

for some small energy δE, where |δE| ≪ mW. With this notation, the
propagator is then

(11.107)

As δE → 0, the invariant mass of the momentum flowing through the
propagator approaches mW, and we expect that the W boson can then go on-
shell. Another way to say this is from the energy–time uncertainty principle.
As δE → 0, the amount of time for which the intermediate W boson can exist
approaches infinity. So, in the δE → 0 limit, the propagator should diverge.
This occurs if ζ = −1, and so we finally have

(11.108)

for the W boson propagator.
Okay, now we have everything we need. Let’s evaluate the Feynman

diagram for muon decay in the electroweak theory. Getting straight to the
answer, we find



(

Note that the momentum flowing through the intermediate W boson
propagator is q = pμ − pνμ. We would like to compare this result to the
corresponding calculation in the V − A theory, Eq. 10.43. However, there’s
still some simplification we can do yet. Let’s evaluate the  that
appears in the propagator. We have

(11.110)

where  is the corresponding three-body phase space variable for the muon
neutrino. This invariant mass is maximized when xνμ = 0, but even in that
case, we still have that  Actually, the ratio of the squared W boson
mass to the squared muon mass is almost a factor of 106 ! So, to extremely
good approximation, we can just ignore the mass of the muon in the W boson
propagator. With this approximation, the Feynman diagram then becomes

(11.111)

Up to an irrelevant overall minus sign (which doesn’t affect the decay
rate), this has the same form as the prediction in the V − A theory. Therefore,
if these are to agree, we must have the relation
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We say that the V − A theory is a low-energy effective theory of the
electroweak theory. That is, when the energy or momentum that flows
through W boson propagators is small compared to the W boson mass, the
predictions of the electroweak theory reduce to those of the V − A theory. So,
finally, we have a prediction of the Fermi constant within the electroweak
theory:

(11.113)

Box 11.1 Historical Profile: Penguin Diagrams

As we saw in this section, W bosons can turn one type of particle into
another (for example, an electron into a neutrino). This is a very important
observation, and in the 1970s several groups exploited this property to
understand the decays of hadrons.13 In particular, a type of Feynman
diagram called a penguin diagram was coined that was responsible for
these decays. An example of a penguin diagram (which if you squint, looks
like a penguin) is:14

As John Ellis recounted to Mikhail Shifman, the origin of the term
“penguin” goes as follows:15

That summer [1977], there was a student at CERN, Melissa Franklin,
who is now an experimentalist at Harvard. One evening, she, I and
Serge [Rudaz] went to a pub, and she and I started a game of darts.



We made a bet that if I lost I had to put the word penguin into my
next paper. She actually left the darts game before the end, and was
replaced by Serge, who beat me. Nevertheless, I felt obligated to carry
out the conditions of the bet.

For some time, it was not clear to me how to get the word into this b quark
paper that we were writing at the time. Then, one evening, after working at
CERN, I stopped on my way back to my apartment to visit some friends
living in Meyrin where I smoked some illegal substance. Later, when I got
back to my apartment and continued working on our paper, I had a sudden
flash that the famous diagrams look like penguins. So we put the name into
our paper, and the rest, as they say, is history.

Franklin and two of her fellowstudents fromgraduate school, Patricia
Burchat at Stanford and Frances Hellman at UC Berkeley, were
coincidentally all chairs of their respective physics departments. A fourth
fellow student, Mary James, is a professor at Reed College.



Summary
With these four predictions, we can then test the ability of the electroweak
theory to consistently describe them. From the first three predictions, the Z
boson mass, the electric charge, and the W boson mass, we can solve for the
three parameters of the electroweak theory:

(11.114)

(11.115)

(11.116)

In these expressions, we use the values of mZ, mW, and e from the PDG. At
this point, this is not a test of the theory: we use three predictions to
determine three parameters. However, from these parameters, we can then
predict the value of the Fermi constant, GF. From the value of the vev
determined above, we predict GF to be

(11.117)

This is within about 3% of the accepted value from the PDG of GF =
1.166×10−5 GeV −2 ! This is an extremely non-trivial result and gives us
confidence that the electroweak theory is indeed the correct description of
these phenomena. The disagreement between the prediction and the measured
value of GF (or any of the other parameters) can be reduced by correctly
accounting for additional quantum mechanical effects in the electroweak
theory.

By the way, the mixing between the  and Bμ bosons to produce the Zμ
and Aμ bosons is typically characterized by the sine of the weak mixing
angle:
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Example 11.2 The top quark is the most massive particle of the Standard
Model, and its decay is mediated by the W boson. Almost exclusively, the top
quark decays to a bottom quark and a W boson:

(11.119)

Because top quarks and bottom quarks are coupled to one another through a
W boson, they form a doublet of SU(2)W, just like the electron and electron
neutrino. In the next chapter, we will discuss quark and lepton doublets in
much more detail, but all we need here is this observation. In this example,
we will study the top quark decay and compare to data.

Solution
The W boson is itself an unstable particle, and so decays to lighter particles.
The W boson can be identified through its decay to a charged lepton (such as
an electron or a muon) and a neutrino: W+ → l+ + ν. So, the full decay of a
top quark as observed in an experiment would be:

(11.120)

The Feynman diagram for this decay is basically identical to that for muon
decay; we just need to relabel the particles:

(11.121)



Correspondingly, the matrix element for this decay is essentially just the
relabeling of that for the muon in Eq. 11.109:

(11.122)

In the denominator of the propagator, we have included the width of the W
boson, ΓW. This term wasn’t relevant for the muon decay, because the
momentum flowing through the propagator was so much smaller than the
mass of the W boson itself. However, the top quark has a larger mass than the
W boson, so it is possible for the W boson to be produced on-shell. The finite
decay width of the W boson regulates the divergence of the propagator as the
W boson goes on-shell, effectively forcing the W boson to exist only for a
finite time.

Further, we will make the narrow width approximation, in which we
assume that the decay width of the W boson is much smaller than its mass:

(11.123)

This is a good approximation, as from the PDG, the mass of the W boson is
mW = 80.379 GeV while its width is only ΓW = 2.085 GeV. In this
approximation, the matrix element has most of its support when the W boson
is on-shell, corresponding to

(11.124)

We then simplify the matrix element with this approximation:

(11.125)

Now, we just need to evaluate some spinor products.
The spinor products that remain are effectively the same as those for muon

decay studied in Section 10.4.1, so we’ll just translate those results to decay
of the top quark. We have the Fierz identity:

(11.126)



The squared matrix element is thus

(11.127)

The mass of the top quark is about 175 GeV, while the mass of the bottom
quark is about 4 GeV. The leptons are less massive yet, so, to very good
approximation, we can assume that only the top quark has a mass. The
squared spinor inner products are then

(11.128)

The squared matrix element is therefore

(11.129)

To calculate the decay rate of the top quark Γt, we need to put this
expression into Fermi’s Golden Rule for decays. As developed in the
calculation of the muon decay, it is most convenient to express the matrix
element in terms of the three-body phase space variables xi, where

(11.130)

for i = b, l, ν. Note that as pt = pb + pl + pν, the sum of the xi variables is 2.
So, there are actually only two independent xi variables. However, the
situation is even simpler than that. Because we used the narrow width
approximation, we have set

(11.131)

Therefore,

(11.132)



So, there is only one independent phase space variable.
In our experiment, it is essentially impossible to observe neutrinos, so we

can’t directly measure xν. It is therefore natural to take the invariant mass of
the visible lepton and bottom quark mlb as the one phase space variable. We
define mlb to be

(11.133)

Not surprisingly, because the total invariant mass of the final state is
constrained to be equal to the mass of the top quark, the neutrino energy
fraction controls the invariant mass of the lepton and bottom quark. We can
now insert all of this into Fermi’s Golden Rule. Translating Eq. 10.71 to the
top quark decay, we have

In this expression, we have included a δ-function that enforces the
intermediate W boson to be on-shell, as specified by Eq. 11.132. Using this,
we can integrate over xb:

Integrating this over xl is straightforward, but we will instead construct the
decay rate differential in mlb. This requires re-expressing mlb in terms of xl.
We have

(11.135)

So, the differential decay rate is found by including a δ-function that
enforces this relationship:
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By a change of variables, we can re-express the δ-function to be linear in xl:

(11.137)

This follows from the δ-function identity

(11.138)

Finally, we can integrate using the δ-function and find that the differential
decay rate is

(11.139)

The distribution of mlb from top quark decays can be measured in data and
compared to this prediction of the weak force. In Exercise 2.9 of Chapter 2,
we studied just the endpoint of this distribution by enforcing relativistic
energy and momentum conservation. Now, we actually have the whole
distribution in hand and so our comparison with data is more meaningful. A
plot of the measurement of mlb from top quarks produced in the CMS
experiment is (re-)presented in Fig. 11.4. This plot (and others) were used by
CMS to measure the mass of the top quark, by comparing with distributions
like that which we derived in Eq. 11.139. Here, we note three features of our
prediction and the data, and in Exercise 11.8, you will test the left-handed
coupling nature of the weak force with these data. In this comparison, we will
just use the approximate measured values of the top and W boson masses of
mt = 173 GeV and mW = 80 GeV, respectively.



Fig. 11.4 Distribution of the invariant mass of the bottom quark and the charged lepton from the decay
of a top quark produced in proton collisions at the CMS experiment. From A. M. Sirunyan et al. [CMS
Collaboration], “Measurement of the tt production cross section using events with one lepton and at
least one jet in pp collisions at  TeV,” J.High Energy Phys. 1709, 051 (2017)
[arXiv:1701.06228 [hep-ex]].

1 First, note that, as mlb → 0, both our prediction and the data go to 0. That
is, there is zero probability for the momenta of the bottom quark and
charged lepton to be exactly collinear. However, such a zero probability
is called a Jacobian zero, because it does not arise from physical
restrictions. To see this, we can make a change of variables to a form of
the differential decay rate that does not vanish as mlb → 0 (hence the term
“Jacobian zero”). The decay rate differential in  rather than in mlb, is

This is non-zero as mlb → 0, as expected.  is linear in the three-body
phase space variables xi, so in some sense it’s the more natural variable
than mlb.



2 The endpoint of this distribution is enforced by the Θ-function, at which

(11.140)

At this point, the differential decay rate is 0, for physical reasons. At the
endpoint, the bottom quark and neutrino momenta are collinear.
Additionally, all final-state fermions must be left-handed (or right-
handed anti-particles), but this then requires the top quark to have a total
spin 3/2! This configuration is:

This isn’t possible as it does not conserve angular momentum, so the
probability must be 0. An endpoint of 153 GeV is also well represented
in the data.

3 Additionally, this distribution has a peak, which we can find by
differentiating with respect to mlb and setting it equal to 0. Doing this, we
find that the peak is located at

(11.141)

This peak location is very close to that observed in data, where it appears
that the maximum value of the distribution occurs in the bin with masses
in mlb ∈ [90, 105] GeV.



Exercises
11.1 Maxwell with a Massive Photon. How badly does electromagnetism

break if the photon has a non-zero mass? As we discussed in this
chapter, if the photon mass does not come from the Higgs mechanism,
then the electromagnetic Lagrangian is not gauge invariant. You may
want to consult Section 2.2.3 for electromagnetism with 0 photon
mass.

(a) Starting from the massive photon Lagrangian coupled to a
current Jμ,

(11.142)

derive the corresponding Maxwell’s equations. Which of
Maxwell’s equations are modified by a non-zero photon mass?
Which are unchanged?

(b) Perform a gauge transformation of the action from this
Lagrangian. What differential equation must the current Jμ
satisfy now? Is this a conservation law? That is, is electric charge
conserved with a non-zero photon mass?

11.2 Scalar Higgs. Explain why, in a Lorentz-invariant universe, the Higgs
particle must be a spin-0 boson.

11.3 Charge 0 Higgs. Why do we take the vev to be in the neutral, charge-
0 component of the scalar doublet  Correspondingly, in our
universe, why must the Higgs boson be electrically neutral?

11.4 Forms of SU(2) Matrices. We can equivalently express an element U
∈ SU(2) as

(11.143)

for real numbers ψ, χ1, χ2 and α1, α2, α3. The σ-matrices are the usual



Pauli matrices. Express α1, α2, and α3 in terms of ψ, χ1, and χ2.
Hint: To do this, Taylor expand both forms of the matrix U to linear

order in the parameters.
11.5 Unification of Couplings. The Standard Model consists of three gauge

groups that collectively describe the strong and unified electroweak
forces. As we discussed in Chapter 8 for QCD and electromagnetism,
the couplings of the electroweak theory, gY and gW, also have energy
dependence; that is, they are also running couplings. At energies
above the top quark mass, the three β-functions of the couplings of the
Standard Model that determine their dependence on energy scale Q
are

(11.144)

Here, we use the standard notation that α3 = αs and

(11.145)

Note that two of these couplings, α2 and α3, are asymptotically free:
their β-functions are negative. α1, on the other hand, has a positive β-
function. This will have interesting consequences when these
couplings are compared at high energies.

(a) Solve the β-function differential equations for the couplings in
terms of their value when Q = mZ, the mass of the Z boson.

Hint: You might find the discussion in Section 8.3.4 helpful.
(b) At Q = mZ, the values of the couplings are

(11.146)

With these coupling values at Q = mZ and the values of the β-
functions, there exist energies at which each pair of couplings
have the same value. Find the three energies Q12, Q13, and Q23 at
which
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How do these three energies compare? Does this hint at a deeper
underlying structure, waiting to be discovered? Remember, the
mass of the Z boson is about mZ = 91 GeV.

11.6 When V − A and When Electroweak? In Exercise 10.7 of Chapter 10,
we studied the IceCube experiment, which detects high-energy
neutrinos through their interactions with protons or neutrons in the
nuclei of water molecules. In the electroweak theory, a Feynman
diagram that represents such a scattering would be

Therefore, the squared momentum that flows through the W boson
propagator is just the Mandelstam variable t:

(11.148)

When  this scattering process is well described by the V − A
theory, while when  the full electroweak theory is necessary.
To what neutrino energies do these limits correspond? Throughout
this problem, you can assume that the neutrino and electron are
massless, and that the proton and neutron are massive and have that
the same mass, mN.

(a) What is the minimum possible value of |t|?
(b) In Exercise 10.7, you derived the energy of the anti-muon in the

process νμ + p → μ+ + n. The same expression can be used for
the electron energy here, namely,

(11.149)



where Eν is the energy of the initial neutrino and θ is the
scattering angle. This expression is the energy of the electron in
the lab frame in which the neutron is at rest. The scattering angle
is the angle between the electron and neutrino momenta. From
this expression, determine the scattering angle at which  
Show that

(11.150)

(c) At what neutrino energy Eν would you begin to need to account
for the full electroweak theory? IceCube has observed neutrino
scattering events in which the scattered lepton has over 1 PeV (=
106 GeV) of energy. In these events do they need to account for
the electroweak theory?

11.7 Charged Current DIS. In Chapter 7, we studied deeply inelastic
scattering, or DIS, in which high-energy electrons were scattered off
of protons. At sufficiently high energies, the electron interacted with
quarks inside the protons through the electromagnetic force and their
properties could be inferred from the scattering angle and energy of
the electron. DIS via electromagnetism isn’t the only way to probe the
inside of the proton; we can also study quarks through the weak force.
We still collide quarks off of protons, but now a neutrino is produced
in the final state, so that a W boson is exchanged. A pseudo-Feynman
diagram of such a process is:



This represents the electron emitting a W boson interacting with an
up quark in the proton, turning it into a down quark in the final state.
This process is called charged current DIS, as the interaction is
mediated by the W boson (the charged current). In this exercise, we
will study this charged current DIS and compare a calculation to data.

(a) From this diagram, calculate the cross section for this process
differential in Q2, the invariant mass of the W boson propagator,
and x, the momentum fraction of the up quark in the proton. You
should find

(11.151)

Your calculation should parallel what we did in Section 7.2. fu
(x) is the up quark’s parton distribution function. Don’t forget
that the W boson couples exclusively to left-handed fermions.

(b) This process was studied by the H1 detector at HERA, located at
DESY. The differential cross section in x at several values of Q2

as measured at H1 is shown in Fig. 11.5. Do these data seem to
exhibit Bjorken scaling?

(c) Using the results presented in Fig. 11.5 and the differential cross
section in Eq. 11.151, estimate the mass of the W boson, mW.

Hint: It might be helpful to express Q2 as a fraction of 
 for some number χ.



Fig. 11.5 Plots of the cross section differential in momentum fraction x for charged current DIS at
several values of Q2. The double differential cross section is measured in units of pb · GeV−2 and the
error bars account for statistical and systematic uncertainties. The data come from C. Adloff et al. [H1
Collaboration], “Measurement of neutral and charged current cross-sections in electron–proton
collisions at high Q2,” Eur. Phys. J. C 19, 269 (2001) [arXiv:hep-ex/0012052].

11.8 Left-Handed Coupling of the W Boson? In Example 11.2, we
calculated the distribution of the invariant mass of the bottom quark
and charged lepton from the decay of a top quark. This calculation
was done in the context of the weak force, with a W boson that
couples exclusively to left-handed particles. We found good
agreement between our calculation and data from CMS presented in
Fig. 11.4. However, is this actually evidence that the W boson only
couples to left-handed particles?

In this exercise, we test this hypothesis by calculating the top quark decay
rate with a hypothetical W boson that couples to left- and right-handed



particles with equal strength. That is, this W boson is like a massive version
of the photon. We then compare this prediction to data and ask whether the
data are better described by the electroweak W boson or by this hypothetical
W boson.

(a) Unlike in the electroweak theory, there are now multiple spin
configurations of the top quark and its decay products that we
must consider. We still assume that the neutrino is exclusively a
left-handed particle, so there are two matrix elements we must
consider:

(11.152)

We’re familiar with how to evaluate the first matrix element, 
 via Fierz identities. The second matrix element,

however, contains the matrix product  which we haven’t
manipulated with Fierz identities yet. Prove that

(11.153)

In this expression, the indices a, b, c, and d define the rows and
columns of the Pauli matrices.

Hint: You might want to consult the calculation of the muon
decay in Section 10.4.1.

(b) As we did in Example 11.2, we work in the narrow width
approximation, setting  With this approximation
and the result from part (a), square the matrix elements and
evaluate all spinor products. For the matrix element of the decay
of the right-handed top quark, you should find

(11.154)



(c) In the calculation of the decay rate Γt, we need to average over
initial top quark spins. That is, the squared matrix element that
we insert into Fermi’s Golden Rule is

(11.155)

Using this average, compute the decay rate differential in the
bottom–quark– charged–lepton invariant mass mlb:

(11.156)

This is then a concrete prediction for this distribution with the
hypothesis that the W boson decays to left- and right-handed
particles equally.

Hint: It will probably be helpful to follow the steps of the
calculation in Example 11.2.

(d) Compare this prediction to the data presented in Fig. 11.4. In
particular, is the decay rate 0 at the endpoint of mlb ≃ 153 GeV?
Explain why or why not by possible spin configurations at the
endpoint.

(e) Where is the peak of this distribution? How does it compare to
the electroweak prediction in Eq. 11.141?

(f) So, which model for the interactions of the W boson more
accurately describes the data, the purely left-handed couplings or
equal left- and right-handed couplings?

11.9 Research Problem. By postulating the scalar potential in Eq. 11.57,
we are able to spontaneously break the SU(2)W⊗U(1)Y symmetry to
just electromagnetism. Where does this scalar potential come from?
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12

Consequences of Weak Interactions

We successfully resolved the outstanding and exceptionally confusing issue
of giving the spin-1 force carriers of the weak force masses. This was
accomplished by the Higgs mechanism, where a spin-0 particle, the Higgs,
acquires a vacuum expectation value which spontaneously breaks the gauge
symmetry and gives the force carrier gauge bosons a mass. We demonstrated
that the simplest theory for the unified electroweak theory is an SU(2)W
⊗U(1)Y gauge theory in which its parameters are overconstrained by
experimental measurements. The fact that there are consistent values for the
electroweak theory parameters is a huge success, and strong evidence for it as
the correct description of the weak force.

Fermions, for the most part, were not involved in the discussion of the
previous chapter. We can just add masses for fermions with no issue; the
Dirac equation happily describes both massive and massless fermions. We
don’t need a Higgs mechanism for fermions. However, the weak force does
something that we never encountered with electromagnetism or QCD. The
weak force not only treats left- and right-handed particles differently, it also
associates different types of fermions. For example, the left-handed electron
and electron neutrino combine to form one electroweak doublet. This fact of
the weak force then requires some gymnastics to be able to include fermion
masses consistent with the SU(2)W ⊗U(1)Y gauge symmetry. In particular,
because the weak force requires us to be careful with fermion masses, we will
find that through interacting with the weak force, fermions can transform into
other fermions with different masses!

This is a pretty crazy claim, and we’ll need to build intuition for how such
a thing is possible. To set the stage for this chapter, let’s remind ourselves
about how we define particles through the irreps under which they transform
and what properties we measure in a detector. This will be of central
importance for how we model and understand the properties of fermion



interactions with the weak force. In our particle detectors, we are especially
sensitive to the energy and momentum of particles, their electric charge, and,
well, that’s (typically) about it. So, we must identify particles based on their
energy, momentum, and electric charge. Identifying particles by their charge
is what it is: we see, for example, positive or negative charge based on the
direction of bending in a magnetic field. Energy and momentum are a bit
more subtle, and thinking about this carefully will lead us down the rabbit
hole of fermion mixing.



12.1 Flavor Mixing in the Weak Interactions
Particles can have, in general, any energy or momentum, so these aren’t
intrinsic properties of a particle. Another way to say this is that the Hermitian
operators of energy and momentum, Ĥ and p̂, have a continuous eigenvalue
spectrum on the Hilbert space of free particles. In terms of classifying
particles, this property isn’t useful, because of the continuous infinity of
energy and momentum states. However, from Ĥ and p̂, we can form an
operator that does yield useful information about the particle. The four-
momentum squared operator

(12.1)

has a discrete spectrum of eigenvalues that correspond to the squared masses
of particles. For example, when acting on the electron wavefunction |e〉, P̂μ P̂μ

returns

(12.2)

So, by measuring the energy and momentum of a particle, we explicitly
collapse its wavefunction into an eigenstate of the squared-momentum
operator; that is, into a state of definite mass.

This point, that our experiments identify eigenstates of mass, was not
discussed when we introduced QCD, nor is it necessary to discuss for
electromagnetism. A free particle traveling through space with a definite
mass always has a definite mass. It is possible that interactions affect this, but
this does not happen in electromagnetism or QCD. An electron in space that
emits a photon must still be an electron; its mass did not change. Similarly,
an up quark that emits a gluon is still an up quark. It cannot turn into a down
quark or a strange quark, or any other quark for that matter. Another way to
say this is the following. In addition to determining a particle based on its
mass, we could also determine a particle through its interactions with the
force-carrying gauge bosons. We refer to this property of a particle as its
flavor. The flavor of a particle can be defined by its eigenvalue of a flavor
operator F̂, which identifies the particle based on its particular set of



interactions. In the case of an electron, the action of the flavor operator which
is sensitive to electromagnetism would be something like

(12.3)

That is, in this case, the flavor operator identifies that the “electron” can emit
photons with a probability that is proportional to the fundamental unit of
charge, e. Also, the particle before and after the emission of the photon is
identical.

Now, as hinted at above, these two definitions of what an “electron” is
(from its mass or from its interactions) are mutually compatible. The particle
with mass me = 511 keV is identical to the particle with electron flavor. In
terms of the squared-mass and flavor operators, this means that collapsing to
the mass eigenstate with me = 511 keV is equivalent to collapsing to the
eigenstate of electron flavor. Thus, the squared-mass and flavor operators
commute:

(12.4)

Restricting ourselves to defining flavor according to electromagnetic or QCD
interactions, the squared-mass and flavor operators commute for every
particle of the Standard Model, for the reason given above. Thus, we have
that

(12.5)

We have explicitly denoted that the flavor operator is only sensitive to
electromagnetic and QCD interactions.

This property that these two operators commute means that they can be
simultaneously diagonalized in the space of fermionic particles of the
Standard Model. That is, the eigenstates of P̂μ P̂μ and F̂EM,QCD are identical,
and so one can perform the same transformation on these two operators to
bring them into a form with only non-zero entries on the diagonal (when
expressed as matrices). If we denote the unitary matrix of these orthonormal
eigenstates by V, then the transformation that diagonalizes these two
operators is



(12.6)

The superscript diag denotes the operator with only diagonal entries. This
transformation preserves the commutator of the operators:

(12.7)

This property means that an eigenstate or particle as identified by its mass
is equivalent to a particle identified by its type (or its interactions with
forces). That is, the particle with mass of 511 keV is the electron flavor, the
particle with mass 106 MeV is the muon flavor, etc. In this way we say that
electromagnetic and QCD interactions are flavor-diagonal: we could
simultaneously diagonalize the squared-momentum operator and the flavor
operator, if all interactions were only electromagnetism and QCD. This
property is analogous to the central-potential problem in quantum mechanics.
States can be classified by their energy and z-component of angular
momentum, because Ĥ and L̂z commute. In quantum mechanics, we can’t
also label states by L̂x, for example, as [L̂x, L̂z] ≠ 0.

But, just like the situation with quantum mechanical angular momentum, it
didn’t have to be that the squared-mass operator and the flavor operator
commute. It is entirely possible that interactions with the force carrier change
the flavor or type of fermion and hence change its mass. In that case then the
flavor operator and the squared-momentum operator do not necessarily
commute, and in general we are forced to pick a basis in which to define our
quantum system. Either states have definite mass but weird interactions with
the force, or they have simple interactions with the force but ill-defined
masses. Because we measure energy and momentum in our experiments, we
pick the first choice (for now anyway). However, this choice is a convention
and convenient. If there is a force that is responsible for breaking a flavor
symmetry such that

(12.8)

a measurement of the mass and flavor of a particle are incompatible quantum
mechanically, in general. In this case, there is no consistent transformation



we can perform to bring both the squared-mass and flavor operators into
diagonal form.

If I had told you this a few chapters ago, you might have scoffed because
what terribly stupid interaction would do that? However, Nature doesn’t care
about our sense of aesthetics, and we now know of a force that does just that.
The weak force, as mediated by the W boson, turns up quarks into down
quarks, or electrons into neutrinos, thereby definitely mixing fermion mass
eigenstates. Thankfully, weak interactions still do not mix quarks into
leptons, so we can study the effects of the non-flavor diagonal weak
interactions for leptons and quarks separately. The story with the leptons is
much simpler than for quarks, so let’s start with them.



12.2 The Weak Interactions in the Quark Sector:
CP Violation

12.2.1 Weak Interactions of Charged Leptons
We need to identify the (squared)-mass matrix for the leptons and their flavor
matrix, as defined by their interactions with the W boson. Starting with the
mass matrix, in the Standard Model the masses of fermions arise in the same
way as the masses of the W and Z bosons: from coupling with the scalar
Higgs field,  and expanding about the vev. So, to determine the masses of
the leptons, we just need to construct those SU(2)W ⊗U(1)Y gauge-invariant
lepton–Higgs interactions. These interactions in the Lagrangian of the
Standard Model are

(12.9)

The three explicit terms correspond to interactions of the electron, muon, and
tau leptons with the Higgs field, and their associated neutrinos. These terms
are indeed gauge and Lorentz invariant. Lorentz invariance follows because
the scalar field  has zero spin, while the spins of the right- and left-handed
fermion fields are anti-aligned. The coefficients ye, yμ, and yτ are called the
lepton Yukawa couplings. The symbol h.c. denotes the Hermitian conjugate
of all explicitly listed terms, to ensure that the Lagrangian or Hamiltonian is
Hermitian, as required by the CPT theorem. For compactness, we will only
do the following analysis for the terms that are explicit; for the h.c. terms, one
just has to appropriately conjugate.

Electroweak Gauge Transformations

The gauge invariance of these terms is a bit non-trivial, so we’ll go through
that carefully. Let’s just focus on the electron term for simplicity; the muon



and tau terms will have the identical transformations. First, we have already
discussed the SU(2)W ⊗U(1)Y gauge transformation of the scalar field  This
was constructed in Eq. 11.54 in Section 11.3.2. Under a gauge
transformation, we have that

(12.10)

Recall that the scalar field  is an SU(2)W doublet and has hypercharge Y = 1.
We then need to determine the gauge transformations of the left-handed

electron doublet and the right-handed electron field. Let’s first work on the
doublet. As it’s a doublet, its SU(2)W transformation is identical to the scalar 

(12.11)

To determine the U(1)Y gauge transformation, we need to determine the
hypercharge of this doublet. This can be found from the electric charge
assignments. Recall that the electric charge of the lower component of the
doublet is  and if this is to be the electron, then Y = −1. Then,
the electric charge of the neutrino is  as required. So, the
U(1)Y gauge transformation of the electron doublet has the opposite sign as
for the scalar 

(12.12)

Now for the right-handed electron. This is an SU(2)W singlet; that is, it
transforms into itself under an SU(2)W gauge transformation:

(12.13)

On the other hand, it does have electric charge, but this will be entirely
determined by its hypercharge Y. Because it is an SU(2)W singlet, its electric
charge is just  Therefore, for this to correspond to an electron, it must



have hypercharge Y = −2. Its corresponding U(1)Y gauge transformation is
then

(12.14)

Putting it all together, the full electroweak gauge transformation of the
electron–Higgs coupling is

(12.15)

So, indeed as promised, these interaction terms are gauge invariant.

Lepton Mass Basis

Now, with these interactions established, we set the scalar  to its vev, and
ignore the Higgs boson for the purposes of determining lepton masses.
Therefore, setting ϕ+ = 0 and  we have

(12.16)

Thus, we immediately see that the masses of the charged leptons are
proportional both to the Yukawa couplings (the strength of the interaction
with the Higgs boson) and to the vev, v. Extremely importantly, in the
Standard Model, the neutrinos are massless. (We will find later that this isn’t
true in Nature, however.) These mass terms have been expressed in the mass



basis, in which there is no mixing between fields corresponding to different
leptons. That is, electron fields are multiplied by electron fields, muon fields
by muon fields and tau fields by tau fields. At this stage, no generality has
been lost by working in the mass basis.

It is also useful to study the gauge transformations that leave these mass
terms invariant. From our discussion in the previous chapter, after expanding
about the vev of  the only electroweak gauge boson that remains massless is
the photon. Thus, the broken theory is only manifestly electromagnetically
gauge invariant. How this works is a bit non-trivial, so we will go through it
in some detail. As earlier, we just consider the gauge transformations of the
electron; the muon and tau lepton properties are identical.

First, as it is an SU(2)W singlet, the electroweak gauge transformation of
the right-handed electron eR is just

(12.17)

as discussed above. Note that this is just a U(1) gauge transformation; in
particular, it is the right-handed electron’s U(1)EM gauge transformation with
electric charge Q = −1. The general electromagnetic gauge transformation for
a particle with charge Q is

(12.18)

Therefore, for these mass terms to be electromagnetically gauge invariant, the
gauge transformation of the left-handed electron eL must be identical to that
of eR ; that is, the left- and right-handed electrons have the same electric
charge.

As there are no neutrinos around, to determine the electromagnetic gauge
transformation of eL we must restrict to those SU(2)W ⊗U(1)Y transformations
that transform eL proportionally to itself. Thus, we ignore those SU(2)W
transformations that have contributions from σ1 and σ2 : these matrices only
have off-diagonal entries, and so turn the electron into the neutrino, and vice-
versa. These gauge transformations correspond to the W bosons, as through
their interactions electrons turn into neutrinos. Thus, only the σ3 term in the
SU(2)W transformation can contribute. Restricting to this case, the action of



the remaining gauge transformations of eL is

(12.19)

On the right, we have expressed this gauge transformation in an equivalent
but suggestive way. For this to be identical to the eR transformation, we must
further restrict to the case with α3 = β. This restriction then eliminates the
factor that contributes when α3 ≠ β; this transformation corresponds to the Z
boson. Therefore, the only gauge transformation of the left-handed electron
that remains as a symmetry of the broken theory lepton mass terms is

(12.20)

This is just the gauge transformation of the U(1)EM theory, and indeed leaves
Eq. 12.16 invariant.

From this form of the Lagrangian, it is then useful to rewrite it to identify
the mass matrix of the leptons. We can form the left- and right-handed lepton
vectors

With these, the Lagrangian can be written as

(12.21)

The mass matrix for the charged leptons is then manifest and diagonal. The
mass matrix for the neutrinos is just the 0 matrix, which is also diagonal. This
feature of the Standard Model will be vital for the lepton mass and flavor
matrices to commute, as we will see shortly. The electroweak gauge
transformations and irreps for leptons are collected in Table 12.1. We have
written this explicitly for electrons, but the same transformations exist for
muons and taus.



Table 12.1 Lepton Electroweak Gauge Transformations

Lepton Flavor Basis

With the mass matrices established, let’s now construct the flavor matrix for
the leptons, as defined by their interactions with the W boson. From the
discussion in Section 11.3.4, the interactions between the leptons and the W
boson are determined by the SU(2)W doublet’s covariant derivative, Eq.
11.86. First, we write these interactions in the flavor basis; that is, in the
basis in which the W boson turns electrons into electron neutrinos, muons
into muon neutrinos, and taus into tau neutrinos. We will denote the fields in
this flavor basis with a subscript F for flavor. The flavor-basis lepton-W
boson interactions are then

(12.22)

In this basis, we can equivalently write this using the lepton vectors we
constructed earlier:

(12.23)

Both the flavor and mass bases are complete and are therefore related to
one another by a unitary transformation. We can introduce two 3 × 3 unitary
matrices that implement this transformation for the charged leptons and
neutrinos, respectively. So, we define these unitary transformations via

(12.24)



for two unitary matrices Uℓ and Uν. The mass-basis leptons are denoted by a
lack of F subscript. With this change of basis established, we can express the
interactions in the mass basis:

(12.25)

Though this is not likely to cause confusion, remember that the σ matrix that
multiplies the W boson acts on the components of the lepton spinors.

From Eq. 12.25, we identify the flavor matrix F̂ as the product of the two
unitary matrices:

(12.26)

Naïvely, we would say that the mass and flavor bases are not the same and
the mass and flavor matrices do not commute because F̂ is not diagonal.
However, we can exploit the property that the neutrinos are massless. As they
are massless, their mass matrix is the 0 matrix, which is unchanged with any
unitary transformation. Thus, we can, with impunity, pick the matrix  to be
any unitary matrix! So, let’s pick the matrix  With this choice, the
flavor matrix is then exceedingly simple:

(12.27)

because Uℓ is a unitary matrix. Therefore, the flavor matrix is the identity
matrix, which is of course diagonal. This proves that the lepton mass and
flavor matrices can be simultaneously diagonalized and therefore have the
same eigenstates. For completeness, the interactions with the W boson are
then

(12.28)

While we have focused on the interactions with the W bosons, this
argument can be extended to all gauge interactions of the leptons. So,



precisely because neutrinos are massless in the Standard Model (we can
rotate them into one another without affecting the structure of masses), we
can simultaneously diagonalize the squared-momentum operator (= mass
matrix) and the flavor operator (= gauge interaction matrix) for the leptons.
We’ll have to correct the masslessness of neutrinos later in this chapter, but
for now, it is an extremely good approximation.

12.2.2 Weak Interactions of Quarks
With the leptons under our belts, let’s attack the masses and weak
interactions of the quarks. The challenge now, unlike the case with leptons, is
that all six quarks are massive. This requires the addition of some unfamiliar
terms in the Lagrangian to accomplish this, so we’ll go through this carefully.

Electroweak Gauge Transformations

As it is simplest, we first construct the gauge transformations for the down-
type quarks (the down, strange, and bottom quarks). The weak interactions
are responsible for up-type quarks turning into down-type quarks, and so we
naturally have SU(2)W doublets that are formed from one up-type quark and
one down-type quark. So, electroweak gauge-invariant interactions between
quarks and the scalar field ϕ are

(12.29)

Recall that with the electric charge assignments from the quark model, the
up-type quarks have charge Qu = 2/3, while the down-type quarks have
electric charge Qd = −1/3. Thus, as required, the upper and lower components
of the SU(2)W left-handed quark doublets have electric charge that differs by
1 unit. Also, note that, when expanding about the vev, these terms only give a
mass to the down-type quarks.

The gauge invariance of these terms is easy to verify. Let’s just consider
the first term with the up and down quarks, u and d. We already know the
gauge transformation for the scalar field  so we won’t write that down again



here. To determine the transformation of the left-handed doublet, we need to
know its hypercharge Y. Again, as the electric charge of the up quark, for
instance, is 2/3, the hypercharge of the left-handed quark doublet is

(12.30)

It then follows that the electroweak gauge transformation of the left-handed
doublet is

(12.31)

The right-handed down quark dR is an SU(2)W singlet, and so its U(1)Y gauge
transformation is just determined by its electric charge. As its electric charge
is Qd = −1/3, its hypercharge is Y = −2/3 and so its electroweak gauge
transformation is

(12.32)

Then, the electroweak gauge transformation of the whole term in the
Lagrangian is

(12.33)

and so is gauge invariant, as claimed. It’s also important to note that this term
is invariant under SU(3) color transformations of QCD, as quarks and anti-
quarks have opposite color charge.

Now, let’s construct the interactions of the up-type quarks (the up, charm,
and top quarks) which will give them a mass. This will be a bit subtle, but we
have gauge invariance as our guide. A mass for the up quark is generated by
a term in the Lagrangian like



(12.34)

Here, we have denoted the entries of a to-be-determined SU(2)W doublet as A
and B. Such a term must be gauge invariant, and this requirement will tell us
everything we need to know. With an electric charge of 2/3, the hypercharge
of the right-handed up quark uR is Y = 4/3 and its electroweak gauge
transformation is then

(12.35)

The net electroweak gauge transformation of the quark doublet and the right-
handed up quark is therefore

(12.36)

For the term in the Lagrangian to be gauge invariant, it then must transform
to cancel this. That is,

(12.37)

This transformation is very nearly the same as for the scalar doublet 
However, apparently, this has the opposite value for the hypercharge. This
doublet has hypercharge Y = −1, and so the electric charge of the upper
component is  while for the lower component it is 

 The electric charge of the field ϕ0 is 0, so this works
as the upper component A of this doublet. The electric charge of the field ϕ+,
however, is +1, and so it cannot be the lower component B. However, its
complex conjugate (ϕ+)∗ ≡ ϕ− does have electric charge −1, by the discussion
of charge conjugation from Section 10.2.2. So, we will set the lower
component B = ϕ−, and this results in gauge-invariant quark–scalar
interactions. Putting it all together, all possible couplings of quarks with the
scalar field  are



The electroweak gauge transformations of the quarks are collected in Table
12.2.

Table 12.2 Quark Electroweak Gauge Transformations

Quark Mass Basis

With this complete expression, we can then expand about the vev of  to
determine the masses of the quarks. Setting ϕ+ = ϕ− = 0 and  the
mass terms for the quarks are then

(12.39)

As with the leptons, it is convenient to express these mass terms with matrix
multiplication of vectors of the up-type and down-type quarks. We then have

(12.40)



In this mass basis, the mass matrices for the down- and up-type quarks are
then diagonal and manifest. What do the flavor matrices look like? Let’s turn
to the interactions with the W boson now.

Quark Flavor Basis

Our approach with quarks will be the same as for the leptons. We first
express the interactions with the W boson in the flavor basis, as denoted by an
F subscript:

(12.41)

This can be written more compactly with a vector of up- or down-type
quarks:

(12.42)

The mass and flavor bases for both up- and down-type quarks can be related
by a unitary transformation, which we define as

(12.43)

for two unitary matrices Uu and Ud.
So far, this is all familiar, and likely slightly boring. The excitement

happens when we insert these expressions into the Lagrangian. Expressing
the interactions with the W boson in the mass basis, we find

(12.44)

For the leptons, the product of unitary matrices in the W boson interactions



was benign; the neutrinos were massless, and so their mass basis could be
rotated arbitrarily and not affect anything. By contrast, all of the quarks are
massive, and so we do not have the freedom to choose Ud = Uu. Such a
constraint will necessarily mix the mass basis of the down-type quarks and
rotate the mass matrix away from diagonal. Therefore, there is no way in
general to ensure that the mass and flavor bases for the quarks are
simultaneously diagonal.

So, apparently, for the quarks the squared-momentum operator does not
commute with the flavor operator:

(12.45)

We call the quark flavor-mixing matrix

(12.46)

the Cabibbo–Kobayashi–Maskawa (CKM) matrix.1

12.2.3 CP Violation of the Weak Interactions

Two-Generation Case

But wait, there’s more weirdness to come. It is not enough that the weak
interactions mix quark flavors. Hidden in the CKM matrix is a dark and dirty
secret: particles and anti-particles do not have the same interactions with the
W bosons. Let’s see what this means. Let’s first consider the simpler case of
just two generations of quarks. In this simpler case, the interactions with the
W boson are then

(12.47)

The CKM matrix is unitary, as it is the product of two unitary matrices. A 2 ×
2 unitary matrix can be parametrized by one angle and three phases as

(12.48)



for an angle θ and phases α, β, γ. It is easy to verify that this is a unitary
matrix.

C This CKM matrix has three non-zero phases in general, which means that
 As such, up quarks and anti-up quarks would interact with W bosons

differently because the complex numbers in Eq. 12.47 are not the same for
particles and anti-particles. However, there’s a catch. This matrix has three
phases and yet mixes four fermions (uL, dL, sL, cL). So, we can perform yet
another change to the fields to remove these phases completely. Recall that
the overall phase of a wavefunction is unphysical; it does not affect
probabilities. We are able to multiply fermions by an appropriate phase to
completely remove the complex numbers from the CKM matrix.

Let’s see how this works. Multiplying out the W boson interactions, we
find

(12.49)

If we then rescale the fields as

(12.50)

all phases are removed! With these phase choices, the Lagrangian becomes

(12.51)

That is, by appropriate change of phase to the fields, the two-generation
CKM matrix is real. The entries of the matrix are defined by the Cabibbo
angle, θC. From the PDG, the measured value of the Cabibbo angle in the
Standard Model is

(12.52)

Note, importantly, that we could remove the three phases because we had
four fields: there is an overall phase of the Lagrangian that must be 0 for it to
be real. With this adjustment, particles and anti-particles have the identical



couplings to the W boson. All is well, for now.

Example 12.1 This two-generation mixing structure has profound
consequences for what processes are allowed in the Standard Model, and
even resulted in the prediction of extra quarks. In the late 1960s, three quarks
had been identified: up, down, and strange quarks. At the same time, the
theory of the weak interaction was being formulated, and it was realized that
the weak force could mediate the decay of the strange quark to a down quark.
The Feynman diagram that describes the process s → dνe νe is

(12.53)

This decay is allowed kinematically because the mass of the strange quark is
ms ≃ 95 MeV, the mass of the down quark is md ≃ 4.5 MeV, and the neutrinos
have very small masses. With only three quarks and mixing between them,
this Feynman diagram is non-zero, and so there would be a non-zero rate of
strange quark decay to down quarks. Such a process that transforms one
quark into another of the same electric charge is called a flavor-changing
neutral current, or FCNC. However, this decay was never observed.

The resolution of this discrepancy between the three-quark prediction and
lack of observation was identified by Sheldon Glashow, John Iliopoulos, and
Luciano Maiani in what is now called the GIM mechanism.2 So, what’s
going on?

Solution

With only three quarks, u, d, and s, we would predict a non-zero decay rate



for this process. Glashow, Iliopoulos, and Maiani’s insight was to predict the
existence of another, new quark whose contribution to the decay rate could
exactly cancel that from the Feynman diagram shown above. This is now
called the charm quark.

With a full two generations of quarks, they mix according to the Cabibbo
matrix from Eq. 12.51. We can then determine the relative importance of the
two Feynman diagrams that contribute to strange quark decays, with either an
intermediate up or charm quark. The diagram for the intermediate up quark is
proportional to

(12.54)

This follows from the coupling of the strange quark to the up quark
(proportional to − sin θC) and the up quark to the down quark (proportional to
cos θC). By contrast, the Feynman diagram with an intermediate charm quark
is

(12.55)



Now, the coupling of the strange quark to the charm quark is proportional to
cos θC, while the coupling of the charm quark to the down quark is
proportional to sin θC. Therefore, these two Feynman diagrams have opposite
signs. When summed together to calculate the matrix element, they (largely)
cancel!

The GIM mechanism is a beautiful resolution to the problem of FCNCs in
the Standard Model. As long as the quarks of the Standard Model come in
complete generations and mix according to a unitary matrix, FCNCs are
highly suppressed. The GIM prediction of the charm quark was made in 1970
and the charm quark was discovered in 1974.3

Before we consider the three-generation Standard Model quarks, let’s
make precise the statement that particles and anti-particles in the two-
generation case interact with the W boson identically. That is, our Lagrangian
in Eq. 12.51 apparently exhibits a symmetry: we can exchange particles and
anti-particles and the Lagrangian is unchanged. Concretely, let’s just focus on
the coupling of up and down quarks to the W boson. Those terms in the
Lagrangian of Eq. 12.51 are

(12.56)

This can be equivalently written as

(12.57)

So, this is invariant under the transformation

(12.58)

Note that overall constants (couplings and mixing angles) are unchanged. In
general, this is not equivalent to complete Hermitian conjugation of the first
term of the Lagrangian in Eq. 12.56. This is a discrete transformation, and
two applications of complex conjugation turn uL back into itself, for example.
This suggests that the operation of exchanging particles and anti-particles is
related to the parity, charge conjugation, or time-reversal transformations that



we identified in Section 10.2. Recall that two applications of each of these
discrete operations is just the identity operator. So, let’s see how we can
construct a particle–anti-particle transformation from C, P, and T.

The first term of Eq. 12.56 couples a right-handed anti-up quark to a left-
handed down quark through a positively charged W boson. (The total charge
of this term is therefore 0.) In the second term, however, all charge
assignments have been negated, so this implies that the action of charge
conjugation C is necessary. Additionally, all spin assignments are the same in
the first and second terms of Eq. 12.56. Charge conjugation doesn’t flip the
spin, and so just the action of C would couple a right-handed up quark to a
left-handed anti-down quark through the W boson. This never happens in the
weak theory, so we need to flip the spins as well. To ensure that the up and
down quarks are both appropriately left-handed, we need to act with the
parity operator P. Then, the combined action of C and P enacts the change we
want:

(12.59)

Again, we emphasize that the mixing angles in the Lagrangian are unchanged
by the action of C and P because they are just pure numbers, and not fields.

Now, with this particle–anti-particle transformation identified, we can act
on the full Lagrangian. The two-generation quark Lagrangian of Eq. 12.51
thus transforms to itself under the action of CP:

(12.60)

We then say that the two-generation quark Lagrangian is CP invariant. So far,
interactions of quarks with the W bosons just violate parity, but preserve CP.
By the CPT theorem, this also means that the two-generation Lagrangian
must be invariant to time-reversal transformations. The story will be different
with three generations of quarks, however.

Three-Generation Case

From earlier, the three quark generations’ interactions with the W boson are

(12.61)



The CKM matrix is now a general 3 × 3 unitary matrix, and as such is
defined by three angles (the Euler angles) and six phases. One of these Euler
angles can be identified with the Cabibbo angle, θC, and the two other angles
represent mixings of other quarks. With these angles and phases, the three-
generation CKM matrix can be expressed as

(12.62)

for angles θC, θ23, and θ13 and phases α, β, γ, δ, ϵ, ζ.
Just as in the two-generation case, many of these phases are unphysical and

can be removed by judicious choices for the phases of the quarks. As there
are six quarks, we can remove five phases; one overall phase cannot be
removed because the Lagrangian must be real (its phase is 0). We won’t
explicitly write those phase choices here, but once this has been done, the
three-generation CKM matrix can then be expressed with three angles and a
single phase:4

(12.63)



Unlike the two-generation CKM matrix, the three-generation CKM matrix is
irreducibly a complex matrix. Thus, in our universe, the CKM matrix is not
equal to its complex conjugate:

(12.64)

Because of this fact, quarks and anti-quarks in general couple to the W
boson differently. As we developed above, the operation of turning quarks
into anti-quarks is accomplished by a charge conjugation and a parity
transformation. Now, acting on the Lagrangian with the combined operation
of CP is not a symmetry:

(12.65)

Box 12.1 Historical Profile: Helen Quinn

While the three-generation CKM matrix is a source of CP violation in the
Standard Model, it is not the only source. Earlier, we noted that QCD
conserves CP; this is mostly true. Any Feynman diagramthat you write
down with QCD interactions will preserve CP. However, there are possible
sources of CP violation that would never be observed in Feynman
diagrams, and come from global, topological properties of QCD, called
instantons. One would in general expect instantons in QCD to break CP,
but this has never been observed. This lack of CP violation in QCD is
called the strong CP problemand the most promising solution was provided
by Robert Peccei and Helen Quinn in 1977. They postulated the existence
of a new particle, called an axion, that is responsible for preserving CP in
QCD.5 Helen Quinn is an Australian-American physicist who spent most
of her career at (then called) Stanford Linear Accelerator Center (SLAC).
In addition to her work on the strong CP problem, Quinn has made



fundamental contributions to understanding unification of the forces of the
Standard Model6 and the physics of bottom quarks; specifically, ways of
observing CP violation in the decays of hadrons that contain bottom
quarks.7 Quinn is also an author on what is perhaps the only particle
physics paper that is presented as an imagined dialogue,8 in a similar spirit
to Galileo’s Dialogo sopra i due massimi sistemi del mondo.

So, not only do the weak interactions violate parity P, because there are three
generations of quarks, the weak interactions through the CKM matrix also
violate the combined action of CP! As the combined action of CPT must be
conserved by the Hermitivity of the Hamiltonian, we equivalently say that the
CKM matrix violates time reversal T. Recall from Chapter 6 that in a
Feynman diagram particles are turned into anti-particles by flipping the
direction of time. The value of a Feynman diagram that involves quarks
coupling to W bosons is different if the arrow of time is flipped.

By the way, it is possible that, for instance, θ13 is zero. As such, there
would be no complex phase in the CKM matrix and therefore no CP
violation. The best measured values of the angles and phase of the CKM
matrix, however, are significantly different from zero. From the PDG, the
value of the angles and complex phase in the CKM matrix are

(12.66)

Uncertainties on these values are at the level of the last quoted digit. None of
these values is consistent with 0, and so the quark sector of the Standard
Model does indeed violate CP.

12.2.4 Fermion Masses in the Standard Model and Tests of
Unitarity

With the gauge-invariant interactions of the fermions of the Standard Model
established, we then potentially have a mechanism for those fermions to
acquire masses. As the masses of the fermions (leptons and quarks) are due to
their coupling to the scalar field  we might be tempted to conclude that the



masses of the fermions, as for the W and Z bosons, is a consequence of the
Higgs mechanism. While this is somewhat of a common understanding, it is
unfortunately not true. As we have argued extensively, the W and Z bosons,
as spin-1 particles, cannot have a mass that is consistent with gauge
invariance. The only way for these particles to consistently have a mass is via
spontaneous symmetry breaking: the full theory is gauge invariant, but the
ground state of the system breaks the manifest gauge invariance. The Higgs
mechanism is required for the W and Z bosons to have masses.

Such a requirement, by contrast, does not exist for fermions. It is allowable
for fermions to have a mass. When we introduced the Dirac equation in
Chapter 2, the discussion was exclusively guided by Lorentz invariance, and
a mass is perfectly compatible with that. A spin-1/2 particle has two degrees
of freedom (spin-up and spin-down) for any mass. The number of degrees of
freedom of a spin-1 particle, however, is two if it is massless (left-and right-
handed helicity), but three if it is massive. Gauge invariance for massless
spin-1 particles means that there are only two degrees of freedom. Massive
spin-1 particles must gain a degree of freedom in some manner, and in the
Standard Model, this is accomplished by the Higgs mechanism.

So where does this incorrect understanding come from? Because of the
left-handed nature of the SU(2)W weak interactions, the only way within the
Standard Model that a gauge-invariant mass arises is from fermions coupling
to the scalar field  Fermion masses are then proportional to the vev v, and
the proportionality constant for each fermion is called its Yukawa coupling.
An honest mechanism for fermion masses would provide a theory of the
Yukawa couplings, which in the Standard Model are just parameters. This is
an especially challenging and subtle problem, as the masses of (electrically
charged) fermions in the Standard Model range over about six orders of
magnitude, from the electron to the top quark. Explaining the hierarchy of
fermion masses is called the flavor problem, and no satisfactory solution has
yet been proposed.

Unitarity of the CKM Matrix

Whether or not we have a solution to the flavor problem, the structure of
quark masses and interactions with the W boson make definite predictions
that we can test. The three generations of quarks mix because of their
interactions with the W boson. Conservation of probability and the CPT



theorem require that the CKM mixing matrix VCKM is a unitary matrix such
that

(12.67)

This is a concrete prediction that can be tested in data. Before we discuss the
tests and validation that it is indeed unitary, let’s discuss the consequences if
it were observed to not be unitary.

If the CKM matrix were not unitary, one interpretation would be that
probability is not conserved in the Standard Model. This would then seem to
call into question the whole of quantum mechanics, which would be an
extraordinary claim. A much more pedestrian possibility is simply that the
Standard Model, as formulated, is incomplete. The CKM matrix only
describes the mixing of three generations of quarks. If only those three
generations mix, then the CKM matrix must be unitary, as we understand
quantum mechanics. So, if it is observed that the CKM matrix is not unitary,
then a possibility is that there is a fourth as-of-yet unobserved generation of
quarks. A 3 × 3 matrix cannot describe generic unitary mixing of four
generations of quarks. A measurement of non-unitarity would then be
evidence for new quark flavors, which could be verified in other ways.
Discovering new particles is always exciting, and the CKM matrix potentially
points where to look for them.

We can express the 3 × 3 CKM matrix in the following form:

(12.68)

Here, the entries are denoted by the amplitudes for quarks to be coupled
through the W boson; for instance, Vud is the amplitude for a u quark to turn
into a d quark through emission of a W boson. Demanding that this matrix be
unitary then enforces relationships between the entries of the matrix. The
constraint from unitarity that is most commonly studied is

(12.69)

This can be interpreted as follows. Each of the three terms in this sum is a



complex number and as such can be represented as a two-component vector
in the complex plane. The sum of vectors equaling the 0 vector means that,
when placed head to tail, the vectors close on themselves. Because there are
three vectors, they thus form a triangle in the complex plane. It is therefore
useful to measure each of them and see to what degree this so-called
unitarity triangle closes.

The typical representation of this triangle equation is from dividing by the
best-known term,  Doing this, we have

(12.70)

which is still a triangle, but has one side fixed to be length 1. It is standard to
denote the term

(12.71)

where ρ and η can be chosen to be positive real numbers. The sides and
angles in the unitarity triangle can be determined from numerous data, such
as decay rates of hadrons and quark masses calculated in lattice QCD. The
most precise determination of the unitarity triangle from the CKMFitter
group as of 2016 is presented in Fig. 12.1. The unitarity triangle is observed
to close to extremely high precision, which therefore constrains possible extra
generations of quarks which may interact through the W boson.



Fig. 12.1 Plot of the unitarity triangle from the CKMFitter group. Various constraints on the sides and
angles of the triangle are represented by the shaded regions, and the consistent location of the vertex off
of the real axis is hashed. From CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005)
[hep-ph/0406184]; updated results and plots available at: http://ckmfitter.in2p3.fr.

The area of the unitarity triangle is a parametrization-independent measure
of the CP violation of the CKM matrix. It is known as the Jarlskog
invariant, after the Swedish physicist Cecilia Jarlskog.9 Note that only if
there is an imaginary part (that is, η ≠ 0) is this triangle non-degenerate and
so has a non-zero area. The current measured value of the Jarlskog invariant J
is

(12.72)

The superscripts and subscripts indicate the upper and lower uncertainties on
the determination of J. This is inconsistent with 0 to many standard
deviations, and so CP is definitively violated in the quark sector.

12.2.5 CP Violation and the Early Universe: Sakharov
Conditions

One of the most striking features of our universe is the fact that there is
overwhelmingly more matter than anti-matter. Hydrogen, the most abundant

http://ckmfitter.in2p3.fr


element in the universe, is composed of protons and electrons; to the best of
our knowledge, anti-protons and positrons only exist as products of high-
energy particle collisions, and not naturally as the composition of stars. The
explanation of this matter–anti-matter asymmetry is especially intriguing
because the Standard Model does not seem to prefer matter over anti-matter
in any way. We saw in the previous section that CP violation meant that
quarks and anti-quarks (that is, matter and anti-matter) interact with W bosons
differently. This does not, however, correspond to a particular preference, and
cannot account for the matter–anti-matter asymmetry alone.

In the 1960s, this problem was becoming sharper because of a number of
recent experimental results. As discussed a couple of chapters ago, C. S. Wu
had discovered parity violation in the weak interactions in the late 1950s, CP
violation in kaon decays had recently been observed,10 and the cosmic
microwave background had just been identified.11 Motivated by these results,
Andrei Sakharov formulated criteria for matter domination of the universe,
which are now referred to as the Sakharov conditions.12 Sakharov identified
three criteria of the early universe which together are sufficient to produce an
asymmetry in the number of baryons versus anti-baryons, or,
correspondingly, an asymmetry in the number of quarks versus anti-quarks.

The three Sakharov conditions are:

1 The early universe must have processes that violate baryon-number
conservation. That is, there must be a mechanism to change the number
of baryons in the universe.

2 Both of C and CP must be violated. By the CPT theorem, CP violation
implies that the early universe must not exhibit time-reversal symmetry.

3 The interactions must occur out of thermal equilibrium. In thermal
equilibrium, the amounts of matter and anti-matter are dictated by the
Boltzmann distribution, and would be identical as they would have the
same energy distribution.

It turns out that all of these conditions can be met in the Standard Model. The
second of the Sakharov conditions, C and CP violation, we have studied in
detail. The weak interactions violate parity, and the CKM matrix violates CP,
so therefore C must also be violated.

The first and third Sakharov conditions are more subtle, and can’t easily be



understood from properties of the Lagrangian of the Standard Model. For the
first condition, it turns out that the vacuum of the Standard Model consists of
an infinity of states with exactly the same energy, though separated by a
potential energy barrier. Traversing or tunneling between different vacua are
accomplished by objects called sphalerons. Unlike quantum tunneling,
sphalerons can be thought of as thermal tunneling: at a non-zero temperature,
there is a possibility for a thermal fluctuation to excite a system over a
potential barrier. To release the acquired thermal energy, sphalerons emit
particles of the Standard Model in such a way that the number of baryons (or
quarks) is not conserved.

The third Sakharov condition can be accomplished through the
electroweak phase transition. We observe in our universe today that the
ground state of the electroweak theory does not manifest all of the gauge
symmetries. However, in the early universe, when the energy density and
temperature were very high, then the particles of the Standard Model would
not correspond to small fluctuations about the ground state. The electroweak
theory would manifest all of its gauge symmetries. However, as the universe
expanded and cooled, regions of the universe where the Standard Model
settled to its ground state could form and, as they would be preferred
energetically, expand and eventually fill the universe. The regions are called
bubbles, in analogy with bubbles of steam that form in boiling water. The
boiling of water is definitely a non-equilibrium process (liquid water is
turning into steam), and this electroweak phase transition from a symmetric
state to a spontaneously broken state is also out of thermal equilibrium.

Unfortunately, the observed matter–anti-matter asymmetry is much too
large to be explained exclusively by the properties of the Standard Model. In
particular, the CP violation of the CKM matrix (as parametrized by the
Jarlskog invariant), while non-zero, is extremely small. So, it remains an
open problem to provide a satisfactory explanation for the source of all of the
Sakharov conditions and why we are composed exclusively of matter.

While his best-known scientific achievements were conditions for matter
domination, Sakharov was also a leader of the nuclear bomb program in the
USSR in the late 1940s and 1950s. Later, Sakharov was an outspoken critic
of nuclear proliferation, human rights advocate, and Soviet dissident. This led
to numerous conflicts with the Soviet government, including a forced exile in
the city of Gorky, but he was ultimately a force for disintegration of the
USSR.



12.3 The Weak Interactions in the Lepton Sector:
Neutrino Mixing
In the previous section, we discussed the exceptionally weird property of the
weak interactions of mixing different mass eigenstates of quarks. We found
that the mass operator (from the measurement of energy and momentum)
could not be simultaneously diagonalized with the flavor operator (defined by
the interactions of the quarks with W bosons). Additionally, because there are
three generations of quarks in the Standard Model, this mixing of quarks
introduces CP violation: quarks and anti-quarks interact differently with the
W boson.

The story with leptons, on the other hand, was actually quite simple.
Unlike quarks, leptons do not mix into one another under the weak
interactions. This argument requires neutrinos to be massless; in that case, we
are allowed to arbitrarily rotate the neutrinos into one another to diagonalize
both the mass matrix and the weak-interaction flavor matrix. The mass matrix
for neutrinos in the Standard Model is the 0 matrix, and multiplying by any
unitary matrix keeps the masses 0. So, this is the story in the Standard Model;
is it true? That is, can we test this prediction?

For simplicity in most of the rest of this chapter, we assume that there are
just two different neutrinos. This captures the majority of the interesting
physics, and the extension
to the case of three neutrinos (that is, three generations of leptons) is
straightforward. The prediction in the Standard Model is that neutrinos are
massless, and therefore the leptons do not mix under interactions with the
weak force. If the leptons do not mix, then the type of neutrino that we
somehow produce (in radioactive decay, for example) will be the type of
neutrino that we always observe. Let’s see if this is the case.

To do this, let’s consider the concrete example of production of neutrinos
at a nuclear reactor; say, the one at Reed College. The heart of a nuclear
reaction, whether it be nuclear fission or fusion, is the decay of the neutron:

(12.73)



By energy, momentum, angular momentum, and charge conservation, the
only possible decay of the neutron is to a proton, electron, and electron anti-
neutrino. Note, importantly, that this interaction occurs via the weak force,
specifically through an intermediate W boson, and so the decay products are
eigenstates of flavor (eigenstates of their interaction with the weak force).
This is what enables us to state with certainty that the anti-neutrino is
electron-type.

To see if the electron anti-neutrino mixes with other neutrino flavors, let’s
put a neutrino detector some distance away from the reactor; say, somewhere
in eastern Oregon. How do we measure a neutrino? Essentially exactly
opposite to how it was created. In Exercise 10.7 of Chapter 10 we discussed
how this is done in the IceCube experiment. A neutrino that was traveling
along strikes a proton in a target and produces a lepton and a neutron.
Because this interaction of the neutrino and proton proceeds via the weak
interaction, the flavor of the lepton produced must be the same as that of the
initial neutrino (because the W boson couples to eigenstates of lepton flavor).
So, we have an experiment that can test whether the neutrinos (and therefore
leptons) mix under the weak interactions. We produce electron anti-neutrinos
in the Reed reactor, let them travel to eastern Oregon, and then see what
flavor of charged lepton is produced in the neutrino–proton scattering.
Identifying the charged lepton, especially if it is an electron or muon, is pretty
easy, so this experiment isn’t too challenging, other than the fact that
neutrinos interact very, very, very weakly with other matter!

The phenomenon of neutrino mixing is referred to as neutrino oscillation,
and the physical description of this phenomenon is quite subtle. We discuss
in detail the assumptions that are necessary for neutrino oscillation to exist
and to correspondingly be observed in experiment.13

12.3.1 Neutrino Oscillations
Though there are three generations of neutrinos, as mentioned above, we
consider the simpler case of just two generations. The extension to three
generations is straightforward and does not add any interesting new physics.
So, we identify the neutrinos of the flavor basis to be electron- and muon-
type, while the two neutrinos of the mass basis will be simply neutrino 1 and
neutrino 2. In the Standard Model, with massless neutrinos, of course the
flavor and mass bases are identical, but we will not make that restricting



assumption here. As the flavor basis, the electron and muon neutrinos have
simple and well-defined interactions with the W boson, while the mass basis
neutrinos 1 and 2 have well-defined masses m1 and m2, respectively. Let’s
see what the consequences are for the phenomenology of neutrinos with these
two, in general different, bases.

Decay Product Entanglement

To begin, as we are considering (anti-)neutrinos produced from neutron
decay, we need to understand neutron decay. The neutron decay reaction
presented in Eq. 12.73 produces a proton, an electron, and an electron anti-
neutrino. The quantum state of these products after neutron decay is special:
the momentum, energy, and angular momentum of the particles are all
correlated with one another, as required by the appropriate conservation laws.
Such a state with strong correlations between particles is referred as an
entangled state. For the decay of the neutron, we might express such an
entangled state of its decay products as

(12.74)

For our purposes here, we define an entangled state as one for which the
quantum numbers of multiple particles are constrained by a collective
conservation law. For example, in the rest frame of the neutron, the collective
energy of the proton, electron, and anti-neutrino must be the mass of the
neutron and their collective momentum must be 0. Additionally, the spins of
the decay products must add to a total spin of 1/2, which is the spin of the
neutron.

We have previously encountered entangled states in our discussion of
isospin in Chapter 3, though we didn’t use that term there. In Example 3.2,
we considered the decomposition of the entangled state of two nucleons into
irreducible representations of SU(2) isospin. Such a state was denoted as |NN〉
and the nucleons were entangled because of their collective isospin. The two
irreducible representations, the isospin singlet and triplet, are distinguished
by their total isospin. For example, consider the anti-symmetric singlet state:

(12.75)



The total isospin of this state is 0 and so any measurement that we make of
this state must correspond to 0 isospin. Consider what the wavefunction tells
us: if we measure nucleon 1 to be a proton, then with a probability of 1,
nucleon 2 must be a neutron (and vice-versa). That is, this is an entangled
state: by measuring just one of the nucleons, we know what the other nucleon
must be by demanding that the total isospin of the two-nucleon state is
conserved and 0.

Correspondingly, the individual properties of entangled particles are
undetermined; all that is determined are the total values of some conserved
quantity measured on the entire entangled state. Disentangling means
collapsing the wavefunction to a state in which every particle has definite
properties. For the example of the isospin singlet, the entangled state consists
of a linear combination of all possible configurations of protons and neutrons
that have a total of 0 isospin. By measuring nucleon 1 to be a proton, for
example, we disentangle the two nucleons, collapsing to the state |pn〉 in
which the nucleons are well defined.

Returning to the case of neutron decay, we can express the entangled state
of the neutron decay products in the mass basis for the neutrinos. Because we
just consider two generations of neutrinos, we can relate the flavor and mass
bases with an orthogonal matrix:

(12.76)

where θ is the mixing angle. Of course, the general mixing matrix would be a
2 × 2 unitary matrix, but we can remove all phases in the two-generation
case, as we did for the quarks earlier in this chapter. With this relationship
between the bases established, we can equivalently express the neutron decay
product state as

(12.77)

On the right side of this expression, each entangled state implicitly conserves
momentum and energy individually. Note that this is a bit non-trivial because
anti-neutrinos ν1 and ν2 have different masses. However, the precise details of
how this works aren’t important for this discussion.

Written in this form, each entangled state on the right of Eq. 12.77 consists



entirely of mass eigenstates. Therefore, they each individually propagate with
a well-defined momentum. This is a necessary consideration because the
point of neutron decay (the Reed reactor) and the detector (in eastern Oregon)
are significantly separated in space, and so these states must propagate from
one point to the other. Then, once the states are detected, we then reverse the
decomposition of Eq. 12.77, expressing the mass eigenstates as flavor
eigenstates, as it is through their interactions that they are detected.

However, this leads to a potential problem. If the decay products remain
entangled throughout the propagation and detection, then you will, with
probability 1, just observe an electron anti-neutrino in your detector. This is
because the entangled state in Eq. 12.77 evolves with a well-defined
momentum, and that momentum is constrained by the decay of the neutron.
The anti-neutrino that you observe in your detector must be electron-type
because all of the initial conservation laws from decay still hold. So, to
observe neutrino oscillations, or to have a non-zero probability that you
observe a muon anti-neutrino in your detector, the decay products must be
disentangled so that the initial conservation laws do not apply. A way to
accomplish this disentanglement is to observe all of the neutron decay
products, and not just the anti-neutrino. Disentanglement happens because
once you observe all decay products, the wavefunctions collapse, and the
results of measurements are represented by classical probabilities and not
quantum mechanical amplitudes.

We therefore assume that we have measured all decay products from the
neutron, and not just the anti-neutrino, and so the states disentangle. As such,
because the states have been disentangled, we can ignore the other decay
products in our analysis, and exclusively focus on the properties of the
neutrinos. This is what we do in the following.

Requirements for Oscillation

With the assumption that the neutron decay products are disentangled, we
then only have to consider the dynamics of the anti-neutrinos (which is what
we wanted to do in the first place!). At the time of neutron decay, the anti-
neutrino is electron flavor and can be decomposed into mass eigenstates as

(12.78)

As fermions, anti-neutrinos ν1 and ν2 satisfy the Dirac equation, and therefore



propagate according to the Klein–Gordon equation. As they are mass
eigenstates (eigenstates of the squared-momentum operator), their respective
Klein–Gordon equations are

(12.79)

These wavefunctions therefore propagate (have position and time
dependence) as

(12.80)

where p1 and p2 are the four-momenta of the mass eigenstates and 
is the spacetime position four-vector. Then, at a generic time t after neutron
decay, the electron anti-neutrino is composed of the mass eigenstates as

(12.81)

While this is time evolution of the electron anti-neutrino, there are other
things that need to be accounted for to ensure that oscillations exist. First, the
time of neutron decay is not fixed: it is exponentially distributed according to
its lifetime, τn. For the neutron, the lifetime is approximately τn = 900 s. This
lifetime sets the size of the wave-packet of the propagating anti-neutrinos ν1
and ν2. That is, the neutron has approximately uniform probability to decay
anytime within 900 seconds. Anti-neutrinos with a velocity v from neutron
decay will be spread in space over a characteristic distance σ = τn v.
Therefore, the wave-packets of anti-neutrinos ν1 and ν2 have characteristic
spreads of σ1 = τn v1 and σ2 = τn v2, respectively.

Additionally, because the wave-packets for ν1 and ν2 travel at different
velocities in general, they will separate from one another in space. Thus, after
propagating for a time t, the two wave-packets will have traveled different
distances from the point of decay. In particular, the distance d1 that ν1 travels
in a time t is d1 = tv1, while the distance d2 that ν2 travels is d2 = tv2. By the
way, the velocities v1 or v2 of the two anti-neutrinos are their group velocity,
because we are considering eigenstates of momentum. The group velocity is
the ratio of the relativistic momentum to the energy of the anti-neutrinos.
Recall that for a particle of mass m, the magnitude of relativistic momentum 



 and relativistic energy E are (in natural units)

(12.82)

where γ is the boost factor. Then, the velocity v is

(12.83)

With this set-up, after the anti-neutrino wave-packets have propagated for
a time t, we have a configuration that looks like that displayed in Fig. 12.2.
For there to be neutrino oscillations observed at the detector, the wave-
packets must have significant overlap; otherwise they cannot interfere
quantum mechanically. Requiring that the wave-packets significantly overlap
leads to constraints on the spread of the wave-packets relative to their
separation. In particular, the separation of or distance between the two wave-
packets Δd after propagating for a time t is just

(12.84)

Fig. 12.2 Illustration of the anti-neutrino wave-packets at time t. In this figure, we assume that v1 > v2,
and so the width of wave-packet 1 is larger than that of 2: σ1 > σ2. The separation of the centers of the
wave-packets is denoted by Δd.

Additionally, the combined spread or width of the two wave-packets σ12 is
just the sum of their individual spreads:

(12.85)

Therefore, for the wave-packets to have significant overlap at the detector,
we need to require that their separation Δd be much smaller than their
combined width σ12 :



(12.86)

To summarize, to observe neutrino oscillation (that is, to observe initial
flavor eigenstate neutrinos turning into an orthogonal flavor eigenstate at the
detector) requires two things to happen:

1 the neutron decay products must be disentangled to eliminate strict
conservation laws of the quantum states, and

2 the neutrino wave-packets must overlap significantly (Eq. 12.86) so that
they can interfere quantum mechanically.

This second constraint tells us how far away we can put our detector to
observe neutrino oscillations. If the distance is too great, then the mass
eigenstate wave-packets will have separated too much, will not interfere, and
exhibit no oscillations. For neutrinos from neutron decay, then, how far can
the detector be from the source to observe oscillations?

Example 12.2 Over what distance do neutrinos’ wave-packets overlap,
enabling oscillations?

Solution

To good approximation, the velocities of the neutrinos are both the speed of
light c = 1 because their masses are so small, and so we approximate

(12.87)

Additionally, the distance traveled from the source to the detector by the
neutrinos d over time t is approximately

(12.88)

in natural units. So, we have the constraint

(12.89)



We now need to evaluate the velocity difference |v1 − v2 | in a useful form.
As discussed above, we can express the velocities of the anti-neutrinos as

the ratio of relativistic momentum to energy. The relativistic velocity is

(12.90)

For neutron decays, the energy of the anti-neutrinos will be on the order of
MeV, while their masses are on the order of eV, so we can Taylor expand.
The velocity is then approximately

(12.91)

Therefore, assuming that the anti-neutrinos have similar energies but different
masses, their velocity difference is

(12.92)

Then, the requirement that the anti-neutrinos have significant wave-packet
overlap is

(12.93)

or, that they stay overlapping as long as the distance d satisfies

(12.94)

With the masses of the anti-neutrinos about 1 eV, the energy–mass ratio is
approximately

(12.95)

Additionally, the lifetime of the neutron in meters is approximately



(12.96)

Therefore, the two mass eigenstates of anti-neutrinos will remain coherent
with significant wave-packet overlap over distances d such that

(12.97)

So neutrinos will exhibit oscillations over millions of light-years!

Oscillation Probability Calculation

We have now identified the relevant requirements for neutrino oscillation to
occur: the neutron decay products must be disentangled, and the neutrino
detector cannot be too far from the source. This latter requirement is quite
trivial for any experiment we might imagine, from the result of Example
12.2.

With this set-up, we want to see how this mixing affects the probability for
an electron anti-neutrino to be observed far from its source. A picture of the
experiment, with artistic license regarding the non-physics parts, is:

That is, the neutron decays in the reactor at Reed College, in Portland,
Oregon, the anti-neutrino from the decay propagates from the source into
eastern Oregon, and then is subsequently observed in our detector. From



earlier, and following from the assumptions that we discussed above, the
electron anti-neutrino at the source (time t = 0) can be decomposed into mass
eigenstates as

(12.98)

After time t = T, the anti-neutrino reaches the detector, and the mass
eigenstates have picked up appropriate phases from their propagation. So, at
time t = T the electron anti-neutrino has evolved into

(12.99)

Here, the spacetime position four-vector is

(12.100)

where L is the distance from the source to the detector. If the mixing angle θ
is 0 (that is, if the mass eigenbasis is identical to the flavor basis), then we
always observe an electron anti-neutrino in eastern Oregon.

With the assumption that the anti-neutrino wave-packets have significant
overlap at the detector, we can rewrite the spacetime position vector x in
terms of the momentum and energy of the anti-neutrinos. The region of
maximal overlap corresponds to the center of mass of the two wave-packets.
The velocity of the center of mass of the wave-packets is just the average
group velocity v of the anti-neutrinos. The average group velocity is just the
ratio of the average momentum to the average energy:

(12.101)

To see that this corresponds to the center-of-mass velocity, it is useful to take
the non-relativistic limit. In that limit the sum of the momenta is

(12.102)

while the sum of the energies is

(12.103)



because the kinetic energies are negligible compared to the masses. Then, the
average velocity is

(12.104)

which is indeed the velocity of the center of mass. For particles traveling in
the same direction, we can of course drop the vectors.

With this average velocity, we identify it with the ratio of the distance to
the detector L over the time elapsed T:

(12.105)

Then, the spacetime position four-vector is

(12.106)

proportional to the sum of the anti-neutrinos’ momentum four-vectors. Using
this result, the time-evolved electron anti-neutrinoat the detector is

(12.107)

We can simplify this expression a bit. First, in the extreme relativistic
limit, the energies of the two mass eigenstate anti-neutrinos from neutron
decay will be very similar, so we will just set

(12.108)

where E is a characteristic energy. Additionally, up to negligible corrections,
we can replace the time of flight from the source to the detector T with the
distance L. Also, the overall phase of a wavefunction has no measurable
consequences, so we can safely ignore the factor outside the square brackets



in Eq. 12.107. Then, the wavefunction of the electron anti-neutrino at time T
can be expressed as

(12.109)

This is then the anti-neutrino that makes it to our detector. Our detector
works by identifying the flavor of the charged lepton produced in the
scattering of the anti-neutrino and a proton. While mass eigenstates have
simple propagation properties, we need to re-express the anti-neutrino at time
t = T in terms of its flavor or weak eigenstates to determine how it interacts
and what we observe.

From earlier, the mass eigenstate anti-neutrinos decompose into flavor
eigenstates as

(12.110)

In terms of νe and νμ states, then, the anti-neutrino at our detector is

(12.111)

Then, the amplitudes for an electron anti-neutrino to be produced at Reed and
observed as an electron anti-neutrino or a muon anti-neutrino in our detector
in Baker City are given by the wavefunction overlaps:

(12.112)



The corresponding detection probabilities are the absolute squares of these
expressions:

(12.113)

To write these expressions, double- and half-angle trigonometric identities
were used liberally. Note, importantly, that the sum of probabilities is 1; that
is, the electron anti-neutrino turns into something in its travel across the
Cascades.

These expressions are exceptionally interesting. Equation 12.113 manifests
why this is referred to as neutrino oscillations. The probability for detecting a
particular flavor of neutrino oscillates with the distance L from the source to
the detector. Note that the anti-neutrinos only mix if they are massive, which
we already knew from our previous study of the quarks. However, even more
interesting is the fact that they only mix if they have different masses! That
is, if ν1 and ν2 had the same mass m = m1 = m2, we could diagonalize the
flavor and mass operators simultaneously. (Can you convince yourself of
this?) If that were the case, then there would be 0 probability to observe a
muon anti-neutrino.

We have also put our detector somewhere in eastern Oregon to observe
neutrino oscillations. Why is this reasonable? Or, rather, to what range of
mass-squared differences does this make us sensitive? Plugging back in the
cs and ħs, the argument of the sin2 is

(12.114)

Here, the dimensions have been removed, and we evaluate the distance L in
kilometers and the energy of the anti-neutrino in MeV, and measure the mass



splitting in eV2. That is, to measure eV neutrino masses, we should indeed
have the detector many kilometers away from our reactor. The distance L
between the source of neutrinos and the detector is referred to as the baseline.

Some other things to note: measuring neutrino oscillations is only sensitive
to the squared-mass difference. It says nothing about the absolute mass scale;
that is, what m is. So, all we can tell from neutrino oscillation is that at least
one neutrino has mass that is not zero, and is different from the masses of the
other neutrinos. Additionally, to exhibit oscillations, we needed to have the
anti-neutrino propagate a long distance. This means that we make no
measurements from the source to the final detection point. If instead we
continually measured the momentum of the neutron decay products, then the
mass eigenstate anti-neutrinos would never pick up the phase factor exp[−ip ·
x]. If that phase factor were not present, then there would be 0 probability to
observe a muon anti-neutrino at any point. This is an example of the
quantum Zeno effect.

This analysis contains most of the physics of neutrino oscillation, but can
be extended to the general case of arbitrary numbers of neutrinos. In
particular, the Standard Model has three neutrinos, which in general mix if
they have different masses. As with the CKM matrix that defined the mixings
of the quarks, there is a 3 × 3 matrix that describes the mixing of the
neutrinos. It is called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix and is parametrized by three angles (the Euler angles) and one
complex phase.14 As with the quarks, the existence of a complex phase
means that, generically, neutrino oscillations of three generations violate CP.
However, unlike the case for quarks, the complex phase of the PMNS matrix
has not yet been measured, so it is not known with certainty what the CP
violation of the neutrino sector is.

12.3.2 Neutrino Oscillation Measurement
This analysis of neutrino oscillation makes a clear prediction: if the mass of
at least one of the neutrinos is non-zero and at least two masses are distinct,
then the probability of detecting a particular flavor of neutrino depends on the
distance from the source and the energy of the neutrino, as defined through
Eq. 12.113. With precise enough measurements, it would then be possible to
measure mixing angles of the PMNS matrix and the squared-mass differences
of the neutrinos. Like the unitarity triangle for the CKM matrix, a



measurement of the neutrino mixing angles would then provide indirect
evidence for the existence or non-existence of a fourth generation of leptons.

To perform this experiment, we need an extremely high flux of (anti-
)neutrinos whose energies are well calibrated. As suggested earlier, such a
source of anti-neutrinos is from a nuclear reactor, as electron anti-neutrinos
are produced in processes related to neutron decay. One of the most prolific
sources of electron anti-neutrinos from a nuclear reactor is at the Daya Bay
nuclear power complex, located in Daya Bay, China.15 There are three
experimental halls which house anti-neutrino detectors, at distances ranging
from a few hundred meters to nearly two kilometers from the nuclear power
plants. These multiple detectors enable corroborating measurements of anti-
neutrinos with various baseline distance to energy (L/E) ratios that determine
the probability oscillation frequency. As the Daya Bay experiment uses
nuclear reactors as the source of electron anti-neutrinos, it is particularly
sensitive to the mixing of mass eigenstate ν1 with the other anti-neutrinos.
Measurements of other neutrino properties through numerous and varied
experiments are collected in the PDG. Here, we just discuss the Daya Bay
experiment and its observation of neutrino oscillations.

The easiest charged lepton to measure and observe is the electron (or
positron), as the electron is a stable particle and does not decay. The Daya
Bay experiment only observes positrons through inverse β-decay interactions
between electron anti-neutrinos and protons in the atomic nuclei of the
detectors. The inverse β-decay process is

(12.115)

which is related to neutron decay by crossing symmetry. Because of this, the
Daya Bay experiment only measures the survival probability of electron anti-
neutrinos: the probability that an anti-neutrino produced at the nuclear reactor
survives to be observed by a detector. That is, the Daya Bay experiment
measures the probability P(νe → νe) as a function of distance from the source
and anti-neutrino energy.

A complete treatment of three-generation neutrino oscillation to which the
Daya Bay experiment is sensitive requires a parametrization of the PMNS
matrix and a more detailed analysis than we presented in the two-generation
case in the previous section. However, the measured mass differences
between the neutrinos significantly simplify the analysis. It has been



observed that the mass difference between the first two mass eigenstates ν1
and ν2 is significantly less than the mass difference between the first and third
ν3 mass eigenstates:16

(12.116)

Therefore, the rate of oscillation between the first two mass eigenstates is
significantly less than between the first and third eigenstates. Therefore, to
good approximation, we can just assume that there are two relevant
generations of neutrinos. As such, the expression for the survival probability
is just what we found in the previous section:

(12.117)

We have also written explicitly the units of the quantities in this expression.
The results of the Daya Bay experiment are shown in Fig. 12.3. The

survival probability P(νe → νe) is plotted versus the baseline in kilometers
divided by the energy of the anti-neutrino in MeV, as this is the relevant ratio
in the survival probability. The oscillation of the survival probability is
unambiguous and provides a very precise measurement of the mixing angle
θ13 and the mass difference  From these results, Daya Bay found

(12.118)



Fig. 12.3 Plot of the electron anti-neutrino survival probability P(νe → νe) as a function of the ratio of
the baseline L to the anti-neutrino energy Eν. Results from the three detectors (experimental halls, or
EH) are shown and the errors only include statistical uncertainties. Reprinted figure with permission
from F. P. An et al. [Daya Bay Collaboration], Phys. Rev. Lett. 115, no. 11, 111802 (2015). Copyright
2015 by the American Physical Society.

These are among the most precise measurements of these mixing parameters
and mass differences.

Example 12.3 Using Fig. 12.3, can we estimate these values for the mixing
angle sin2 2θ13 and mass difference 

Solution

To do this, note that the mixing angle sets the amplitude of oscillation and the
mass difference sets the frequency of oscillation. The first trough appears at
approximately

(12.119)

and sin2 is maximized when its argument is equal to π/2. (Note that the
maximum corresponds to the trough because it is subtracted from 1.) Setting
the argument of sin2 in Eq. 12.117 to π/2, we have

(12.120)



or that

(12.121)

This is within uncertainties of the value that Daya Bay extracted.

For the mixing angle, we just look at the amplitude of the trough. At the
trough, the amplitude is approximately 0.92, corresponding to

(12.122)

or that

(12.123)

This is within uncertainties of the Daya Bay value.

12.3.3 Neutrino Astrophysics
Neutrino oscillations imply that neutrinos must be massive, which is in
contrast to the Standard Model prediction. Because they interact so weakly
with matter, they are really hard to measure directly, unless there is an
exceedingly large flux of neutrinos. One way to measure neutrinos that has a
sufficient flux and can be used to set bounds on the absolute scale of neutrino
masses is through observation of a supernova. In the collapse of a star under
its own gravity, unimaginable densities are created that fuel the largest
explosions in the universe. In the explosion of a supernova, the light
produced in the explosion must pass through the plasma of high-temperature
matter. This plasma consists of ionized protons and electrons (i.e., charged
particles), so the photons have a very small mean free path. They bounce
around in this plasma like ping pong balls in a washing machine, interacting
with the protons and electrons that impede them from propagating out.
Photons get stuck in the supernova for an extended period of time. Neutrinos,
unlike photons, really do not like to interact with other particles. So, while
the photons are stuck in the supernova, neutrinos pass right through, with



essentially no impedance.
In February of 1987, a supernova explosion was directly observed on

Earth.17 It was observed optically and studied extensively by astronomers for
several months, and was even visible to the naked eye. A composite image of
SN 1987a taken over a number of years after the original explosion is
displayed in Fig. 12.4. Unlike most astrophysical observations, the first
detection of SN 1987a was actually via neutrinos. Because the explosion of a
star or supernova is governed by nuclear processes, we should expect copious
neutrino production. Because of the delay in the photons escaping the
supernova, neutrinos from SN 1987a actually arrived at Earth before the
photons. There was a good 2 hours between them!

Fig. 12.4 A composite image from the Hubble Space Telescope of the remnants of SN 1987a, identified
as the double ring structure in the center of the image. Credit: NASA, ESA, R. Kirshner (Harvard-
Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation), and M. Mutchler and
R. Avila (STScI).

Several neutrino detection sites around the globe measured a total of 25
neutrinos from SN 1987a.18 This was enough, however, to place an upper
bound on the mass of the neutrinos of about 16 eV. If the neutrinos were



more massive, then they would have taken longer to get to Earth, and might
not have beaten the light in getting here. Also, though only a whopping 25
neutrinos were observed on Earth, it is believed that 99% of the energy in a
supernova explosion is contained in neutrinos. In SN 1987a, these neutrinos
observed on Earth were consistent with models that predicted 1058 neutrinos
produced for a total energy of 1046 Joules. The Sun would have to shine for
about a trillion years to match the energy in neutrinos in SN 1987a!



Exercises
12.1 Mass and Flavor Basis Commutator. We started this chapter with a

discussion of the non-commutativity of the mass and flavor bases for
expressing the different generations of quarks. In this exercise, we
study the commutator of the mass and flavor operators. For the up-
type quarks, for example, the mass matrix from Eq. 12.40 is

(12.124)

The CKM matrix was formed from the product of unitary matrices
that related the up and down quark flavor and mass bases:

(12.125)

We argued that the CKM matrix VCKM could not be brought into
diagonal form, but we are still free to choose the down quark mass
and flavor bases to be identical. This sets the mixing matrix Ud to be
the identity:

(12.126)

We will work with in this basis in this exercise.

(a) In this basis, the up quark mixing matrix is then just the CKM
matrix:

(12.127)

A particularly useful parametrization of the CKM matrix is
called the Wolfenstein parametrization.19 In this form, we
express the CKM matrix as

(12.128)



where A, λ, ρ, and η are real numbers. λ is assumed to be very
small, λ ≪ 1, which is consistent with the measured elements of
the CKM matrix. Show that this matrix is unitary, up to
corrections of order λ4. That is,

(12.129)

(b) As a unitary matrix, the CKM matrix can be expressed as an
exponentiated Hermitian matrix:

(12.130)

where  is Hermitian. With the CKM matrix in the
Wolfenstein parametrization, determine Fu through O(λ3).

Hint: To do this, express the CKM matrix as VCKM = I + X, for
a matrix X. Then, Taylor expand both sides to cubic order in X:

(12.131)

Only keep those terms up through order λ3.
(c) The Hermitian matrix Fu is the flavor matrix for the up-type

quarks. Evaluate the commutator of this flavor matrix and the
mass matrix Mu defined in Eq. 12.124. That is, calculate

(12.132)

Is it non-zero? At what order in λ are the first non-zero terms?
(d) Can you provide a physical interpretation of the value of this

commutator? For example, what experiment would you do to
measure this commutator?



12.2 Unitarity of the CKM Matrix. Verify that the parametrizations of the
CKM matrix in equations 12.62 and 12.63 are unitary matrices.

12.3 Jarlskog Invariant. As discussed in Section 12.2.4, the Jarlskog
invariant is a measure of the amount of CP violation in the CKM
matrix, assuming that the CKM matrix is unitary.

(a) From the unitary condition

(12.133)

on the entries of the CKM matrix, calculate the Jarlskog
invariant in terms of the CKM matrix entries. Recall that the
expression above can be interpreted as a triangle in the complex
plane, and the Jarlskog invariant is the area of that triangle.

Hint: It might help to draw a picture of this triangle.
Remember, the area of a triangle is unchanged under rotation.

(b) The CP violation in the CKM matrix happens to be quite small
(not enough to explain the matter–anti-matter asymmetry, for
example). What is the largest possible value of the Jarlskog
invariant J? How much larger is this than the current measured
value of J from Eq. 12.72?

Hint: What type of triangle corresponds to the largest possible
J? What are the lengths of its sides?

12.4 Extra Quark Generations. With more than three generations of
quarks, the structure of the corresponding CKM matrix would be
different than we studied here. We argued that the CKM quark mixing
matrix, VCKM, has four parameters because there are three generations
of quarks: three angles and one complex phase. The existence of an
irreducible complex phase means that particles and anti-particles
couple to W bosons differently, leading to CP violation.

Consider a universe in which there are N generations of quarks.
How many independent, irreducible parameters of the corresponding
quark mixing matrix would there be? How many are angles? How
many are complex phases?

Hint: If you are in N dimensions, how many distinct, orthogonal
planes are there in which you can rotate? Don’t forget to eliminate



phases by redefining the quark fields.
12.5 Measuring the Cabibbo Angle. Each element of the CKM matrix can

be determined by studying particular hadron decay modes or
production processes that involve a W boson mixing quark flavors. An
extensive presentation of all of the measurements that go into
determining the CKM matrix can be found in the PDG. In this
exercise, we will work to just extract the Cabibbo angle θC from a
comparison of different decays of a D meson.

The D mesons are a class of hadron that consist of a charm quark
and an up, down, or strange quark. The D+ meson is a positively
charged particle that is formed from the bound state of a charm quark
and an anti-down quark: D+ = cd. There are numerous decay modes of
this meson; the two we will study here are decays to a neutral kaon K0

and a neutral pion π0 :

(12.134)

Feynman diagrams that are used to calculate the decay rates for
these processes are

(12.135)



From the PDG, the fraction of the time that the D+ meson decays to
these final states (called the branching fractions) is

(12.136)

Using these Feynman diagrams and the branching fractions, estimate
the sine of the Cabibbo angle, sin θC.

Hint: How is a Feynman diagram related to a decay rate?
12.6 Non-Relativistic Limit of Neutrino Oscillations. Equation 12.113 was

our final result for neutrino oscillation probabilities for two
generations of neutrinos. In that derivation, we assumed that the
neutrinos were relativistic; what does the non-relativistic limit look
like? Restore factors of c and ħ in the probabilities of Eq. 12.113, and
take the non-relativistic limit. Further, exchange the baseline distance
L for the propagation time T. The result you find should look very
similar to the oscillation rate between the energy eigenstates in a two-



state system. For example, you should find the survival probability to
be

(12.137)

12.7 Neutrinos for Nuclear Non-Proliferation. A fascinating proposal for a
practical use of neutrinos and neutrino detectors is as a detection tool
for production of nuclear weapons. A vital ingredient in nuclear
weapons is radioactive elements enriched with isotopes that can
sustain fission reactions. An example of this would be enriched
uranium in which the235 U content is significantly increased with
respect to the dominant isotope238 U. Nuclear chain reactions with235

U (controlled in a reactor or uncontrolled in a weapon) would release
a huge number of neutrinos which could be detected a long distance
away, and the yield of the reaction determined by the number of
neutrinos detected.

One such neutrino detector that is proposed for potential non-
proliferation applications is the WATCHMAN experiment.20 The
WATCHMAN experiment would consist of a 10.8 m high and 10.8 m
diameter cylinder filled with gadolinum-doped water. Anti-neutrinos
are detected through the inverse β-decay process

(12.138)

so it is vital to observe both the positron and the neutron in the final
state. The purpose of the gadolinium (mostly158 Gd) in the water
(which only needs to be about 0.1% by weight) is to capture as many
of the neutrons as possible, which can be up to about 85% of all
neutrons produced.

(a) At 0.1% doping by weight, how many158 Gd atoms would there
be in the WATCHMAN detector?

(b) A first goal of WATCHMAN for non-proliferation applications
is to detect a 10 megawatt (MW) nuclear reactor at a distance of
about 25 km. The fission of one235 U atom releases about 200
MeV of energy. In a 10 MW reactor, how many235 U atoms



undergo fission per second? What is the total mass of235 U atoms
that fission per second?

(c) On average, about two electron anti-neutrinos with MeV-scale
energies are produced in the fission of235 U. If the
WATCHMAN experiment is 25 km from the 10 MW reactor,
estimate the number of anti-neutrinos that pass through it per
second.

(d) Assuming that the gadolinium doping ensures that 100% of the
neutrons produced from inverse β-decay can be observed, how
long would you have to wait to see just one reactor anti-neutrino
interact with the water in the WATCHMAN experiment? You
can assume that the cross section for inverse β-decay is about
10−19 b.

Hint: Don’t forget that water consists of two hydrogen atoms
and an oxygen atom.

(e) 25 km isn’t very far, and in many cases is unlikely to be a
realistic distance from a nuclear reactor where a neutrino
detector could be placed. Assuming that a neutrino detector
could be realistically placed 200 km from a nuclear reactor,
about how much water would be needed to detect electron anti-
neutrinos at the same rate as calculated in part (d)? You can still
assume that the nuclear reactor power output is 10 MW. Express
your answer in kilograms of water.

12.8 Neutrinos from SN 1987a. While SN 1987a emitted 1058 neutrinos,
only 25 were detected on Earth about 2 hours before light from the
supernova was detected. In this exercise, we will use this observation
to estimate neutrino properties.

(a) SN 1987a is about 168,000 light-years from Earth. If the Earth’s
radius is about 6000 km, estimate the number of neutrinos from
SN 1987a that passed through Earth.

(b) The Kamiokande-II detector in Japan observed 11 neutrinos
from SN 1987a. It was a cylindrical vat about 16 m high and 16
m in diameter filled with water. Neutrinos that passed through
the water would occasionally hit a hydrogen or oxygen nucleus



and produce a charged lepton that would emit Čerenkov
radiation that was detected in photomultiplier tubes.
Approximately how many neutrinos from SN 1987a passed
through the Kamiokande-II detector?

(c) From the observed number of neutrinos and the total that passed
through Kamiokande-II, estimate the cross section for neutrinos
to interact with water molecules. You can safely assume that
neutrinos are traveling at the speed of light and water molecules
are at rest. The total time over which the neutrinos were
observed was about 1 minute.

(d) The time difference between observing neutrinos and light from
SN 1987a was used to place an upper bound on the mass of
neutrinos of about 16 eV. To establish this bound requires
modeling the supernova and estimating the mean free path of
photons as they pass through the charged particles produced in
the explosion. While this is quite detailed, we can still get a
sense for how this mass bound was established.

If neutrinos were massless, how long would it take them to
travel from SN 1987a to Earth? What if neutrinos saturated the
mass bound of 16 eV? How does the time difference between the
different neutrino mass assumptions compare to the observed 2
hour time difference between neutrinos and light arriving at
Earth? You can assume that the energy of the neutrinos is 1
MeV.

12.9 Solar Neutrino Problem. In the process of nuclear fusion of hydrogen
nuclei and other light elements in the Sun, a copious amount of
neutrinos are produced. Because these nuclear fusion chains involve
turning protons into neutrons, and vice-versa, exclusively electron
neutrinos are produced. One can then observe electron neutrinos
produced from the Sun (called “solar neutrinos”) on Earth and
compare to the number expected. Surprisingly, significantly fewer
neutrinos have been observed on Earth than are expected to be
produced by the Sun. This is referred to as the solar neutrino
problem.

The resolution is that neutrinos oscillate from the initial electron-
type to other neutrinos which are not observed. As a first estimate of



the fraction of solar neutrinos observed on Earth, assume that the
neutrinos are produced incoherently in the Sun and propagate to
Earth. The relevant mixing angle for initial electron neutrinos is θ12,
for which

(12.139)

from the PDG. What is the survival probability P(νe → νe) for
electron neutrinos produced in the Sun and measured on Earth?

12.10 Research Problem. What is the absolute mass scale of neutrinos? Are
any of the neutrinos massless?
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The Higgs Boson

The weak interactions provided some significant surprises for the physics in
the subatomic world in relation to our experiences of other forces, like
electromagnetism or gravity. In addition to parity violation of nuclear decays
that initiated our foray into the weak interactions, we have also identified the
phenomena of spontaneous symmetry breaking, flavor violation, CP
violation, and neutrino oscillations. Except for gluons, which interact
exclusively through QCD, every other particle of the Standard Model is
involved in the weirdness of the weak force.

In our discussion thus far, however, the Higgs boson has just been a
consequence of Goldstone’s theorem and the Higgs mechanism of the
spontaneous symmetry breaking of the unified electroweak force. In a real
sense, the Higgs boson is a lynchpin of essentially the entire Standard Model,
and so its observation and existence is a huge validation of the theoretical
structure that we have constructed.1 So, if we are to claim victory in having a
complete theoretical understanding and experimental verification of the
Standard Model, we need to observe the Higgs boson.

Nevertheless, this is a very tall challenge. The Higgs boson was predicted
in the early 1960s and wasn’t observed through many generations of
experiments. Its lack of observation stumped physicists over and over again.
If it were to exist, we know all of its interactions by the structure of the weak
force. However, we do not know its mass, as that is not constrained by any
properties of the weak force. Scientists looked and looked, in new
experiments and higher energies, but no Higgs was found. A now-classic
book, The Higgs Hunter’s Guide, was published in the late 1980s as a
compendium of properties
of the Higgs boson.2 It wasn’t until 2012 that these hunters caught their
quarry, in the experiments of the Large Hadron Collider.3

In this chapter, we discuss efforts of searches for the Higgs boson and how



it was eventually discovered at the LHC. This requires a detailed
understanding of both the production and decay of the Higgs at colliders.
We’ll start with searches for the Higgs boson at LEP, and then searches at the
Tevatron and early searches at the LHC, which provide robust lower and
upper bounds that frame the eventual discovery.



13.1 Searching for the Higgs Boson at LEP
In searching for the Higgs boson at an electron–positron collider like LEP,
we might first imagine discovering it in a similar way that the Z boson is
observed. At our e+ e− collider, we can continuously vary the center-of-mass
collision energy. When the collision energy is near 91 GeV, we observe a
significant increase in the likelihood of interaction, which we ascribe to the
existence of the Z boson at that mass. Similarly, as we tune the collision
energy, we might observe another energy at which the likelihood of
interaction increases significantly, which we could associate with the Higgs
boson. With this in mind, where should we look?

An important aspect of the Z boson is that we already knew where to look.
As discussed in Section 11.3.4, by knowing the electric charge e, the Fermi
constant GF, and the mass of the W boson mW, the electroweak theory
uniquely predicts the mass of the Z boson, mZ. So, if we didn’t know where to
look before, we can use the electroweak theory to guide the way to find the Z
boson. Unfortunately, such a guide does not work with the Higgs boson.
Within the Higgs mechanism, the Higgs boson acquires mass through its
potential. Recall that the potential for the scalar field  is

(13.1)

In this expression, we have expanded the field  about its vev v and
identified the Higgs boson H(x) as the fluctuations about the vev. The mass
mH of the Higgs boson is the coefficient of the term quadratic in the Higgs
field H(x):

(13.2)

We know the value of the vev v from other measurements, as mentioned
above, but the parameter λ is thus far completely unconstrained. No



properties of the W or Z boson provide insight into the value of λ, and so the
electroweak theory does not tell us where to look for the Higgs. We have to
look everywhere!

While this seems daunting (and indeed it is!), we’ll be systematic and
search for the Higgs boson where and how we can. As we saw with the Z
boson, our first attempt at searching for the Higgs boson is to look for a of
center-of-mass, s-channel resonance in e+ e− collisions. In the case of the Z
boson, we observed that as the center-of-mass collision energy was tuned to
be around 91 GeV, the scattering cross section significantly increased. We
can in principle do the exact same thing to find the Higgs boson: scan over a
wide range of electron–positron collision energies and look for a bump,
which would correspond to the Higgs boson as a resonance. This general
procedure is colloquially called bump hunting. Unfortunately, this turns out
to be essentially an impossible endeavor, unless your data set consists of an
exceedingly large number of electron–positron collisions.

13.1.1 e+ e− → Z
To justify this claim, let’s first estimate the cross section for producing a Z
boson in e+ e− collisions, e+ e− → Z. The Feynman diagram for this process
is

The Z boson in this diagram is a final-state particle, and as such, is something
that we would detect in our experiment. We know, however, that the Z boson
is an unstable particle and decays very quickly into less massive particles
(like leptons or quarks) that we actually detect. Nevertheless, it is not
unreasonable to assume that the Z boson is a final-state particle; or,
equivalently, that it has a relatively long lifetime. The approximation that an
unstable particle like the Z boson is taken to be on-shell and long-lived is
referred to as the narrow width approximation. The narrow width
approximation is justified for the Z boson because its decay width is about
2.5 GeV, which is much smaller than its mass. (See Exercise 1.6 of Chapter



1.) We use the narrow width approximation to analyze the production of both
the Z boson and the Higgs boson here.

To calculate this Feynman diagram, we need to determine the strength with
which electrons couple to the Z boson. This can be extracted from the
covariant derivative of the electroweak theory. From the expression of the
covariant derivative constructed in Section 11.3.3, electrons couple to the Z
boson as

(13.3)

To write this expression, we recall that the left-handed electron eL is the
lower component of an electroweak doublet (with the electron neutrino) with
hypercharge Y = −1, while the right-handed electron eR is an electroweak
singlet with hypercharge Y = −2. The coefficients of the appropriate
electron–Z coupling terms in the Lagrangian are the corresponding values of
the vertices in the Feynman diagram calculation. So, with that, we can
calculate these cross sections.

Starting with the left-handed electron coupling, the Feynman diagram is

(13.4)

Because the Z boson is a spin-1 particle, its external wavefunction is a
polarization four-vector, ϵ(pZ), just like the photon or gluon we encountered
earlier in Sections 2.2.3 and 7.3.2. The Feynman diagram with a right-handed
electron is correspondingly

(13.5)



To calculate the squared matrix element, we need to individually absolute
square these separate helicity configurations and then sum. Additionally,
because the initial electrons and positrons are unpolarized in our experiment,
we divide by a factor of 4 to account for the initial-state spin average. Then,
we have

(13.6)

To go further, we need to think about our experimental detector. We
typically only measure the energy and momentum of final-state particles (and
maybe their charge), and so we do not select different polarizations of the
final-state Z boson. That is, from our detector’s point of view, the Z boson is
unpolarized. With this assumption, the Z boson cannot distinguish between
the different initial electron and positron helicities. Therefore, the two
different products of external particle wavefunctions in Eq. 13.6 are equal:

(13.7)

Because the Z is unpolarized, we need to sum over its spins, which we
include implicitly here, but will address shortly. With this simplification, we
still need to evaluate the product  for example. While
we have discussed several ways to do this throughout this book, we’ll
introduce yet another way here. Doing this will be the first example of this
chapter.

Example 13.1 What is the spinor product



(13.8)

Solution

Let’s deconstruct the product  carefully. As usual, we
make the simplification that the electron is massless. We can expand out the
absolute square:

(13.9)

First, note that  is the outer product of two spinors. In Exercise
6.2 of Chapter 6, you showed that this outer product is

(13.10)

So, we can make this replacement. Additionally, note that we could have
equivalently written the absolute square as

(13.11)

In this expression, we can use the fact that the outer product of spinors is

(13.12)

To relate these two expressions for the absolute square, we note that the
trace of the outer product of spinors is just the inner product:

(13.13)

Therefore, we can express the absolute square as a trace of a product of Pauli
matrices:

(13.14)

Now we’re cooking. Let’s work in the center-of-mass frame and align the
three-momenta of the electron and positron along the ẑ-axis. Then, the four-
vectors of the electron and positron are



(13.15)

With these choices, the spinor outer product matrices are

(13.16)

Also, we can express the Z boson polarization vector in terms of its explicit
components as

(13.17)

for instance. Then, the matrix product with the polarization vector is

(13.18)

Now that the matrices are all constructed, we can take their product and
trace:

As the Z boson is unpolarized in our experiment, we need to explicitly sum
over its polarizations. So, we need to determine a complete basis of
polarization vectors and sum their contributions. While we have often
discussed circular polarization or helicity, the Z boson is a massive particle,
and as such doesn’t have a well-defined helicity. A useful polarization basis
in this case is then linear polarization, in which the Z boson is polarized
along one of the spatial axes. We can work in the frame in which the Z boson
is at rest so that its momentum four-vector is

(13.20)



As we discussed in Chapter 3, the 0th component of a spin-1 boson does
not propagate (regardless of its mass), and so the linear polarization vector ϵ
has no 0th component either. A massive, spin-1 particle can then be polarized
about the x̂, ŷ, or ẑ axes, and the corresponding polarization basis is

(13.21)

The absolute squared spinor product, summed over Z boson polarizations, is
then

(13.22)

When the dust settles, we finally find that the squared matrix element,
averaged over initial spins and summed over Z boson spins, is

To calculate the cross section, we then put this into Fermi’s Golden Rule and
integrate over the phase space of the final-state Z boson. From Fermi’s
Golden Rule (and skipping a few steps), we have

The integral over the Z boson momentum pZ is one-body phase space, which
is weird, but let’s just do the integrals blindly, and think about the physical
interpretation later. The momentum-conserving δ-function can be used to



remove all four integrals, so we find

In this expression, note that momentum conservation enforces 
This cross section is interesting: its functional dependence on the center-

of-mass energy Ecm is a δ-function. In the narrow width approximation, the Z
boson is only produced in e+ e− collisions if the center-of-mass energy is
precisely mZ. This is a bit unrealistic, and a finite decay width will smear this
out a bit, but it’s nevertheless a good approximation. We can also plug in
values for the electroweak couplings gW = 0.642 and gY = 0.344 that we
extracted in Section 11.3.4, and find

(13.26)

This will be useful for comparing to the Higgs production cross section in the
following.

13.1.2 e+ e− → H
Now, let’s calculate the cross section for electron–positron scattering to
directly produce a Higgs boson, e+ e− → H. The Feynman diagram for this
process is

and to calculate it, we need to determine the strength with which the electron
couples to the Higgs boson. The coupling of the Higgs boson to the electron
follows from expanding the



scalar field  about its vev. Following our work in Section 12.2.1, the mass
and coupling of the electron to the Higgs boson H terms in the electroweak
Lagrangian are

(13.27)

The strength of coupling of electrons to Higgs bosons is thus proportional to
the electron’s Yukawa coupling, ye. Note that, because the Higgs boson is a
spin-0 particle, electrons and positrons of opposite spin or identical helicity
interact with the Higgs boson. Thus, for example, the Feynman diagram for a
left-handed electron and left-handed positron producing a Higgs boson is

(13.28)

The external wavefunction for the Higgs boson in the Feynman diagram is
just 1 because it has no spin (i.e., it is always in the same spin state with
probability 1).

The absolute square of this Feynman diagram is then

(13.29)

To evaluate the spinor product, we can use the trace trick developed in
Example 13.1. We have

(13.30)

(13.31)

We have already evaluated the matrix σ · pe− in the center-of-mass collision
frame, and the other matrix is actually identical:

(13.32)



The spinor product then immediately follows:

(13.33)

Because the Higgs boson couples to all helicities of electrons identically, the
matrix elements for left- and right-handed electron–positron scattering are
identical:

(13.34)

Then, by averaging over the spins of the electron and positron, we find

(13.35)

To calculate the cross section, we use Fermi’s Golden Rule, and we now
know how to interpret the one-body phase space integrals from the discussion
of the previous section. The cross section is

From Eq. 13.27 above, the electron mass me is

(13.37)

With the vev v = 246 GeV and me = 511 keV, the electron Yukawa coupling
ye is

(13.38)



This is tiny! Plugging this into the expression for the cross section, we have

(13.39)

This is a factor of more than 1010 times smaller than the result for the
production of the Z boson, Eq. 13.26! Another way to say this is that we
would need to collect 1010 times more data than LEP to have measurements
of the Higgs boson that have a comparable precision to the existing studies of
the Z boson. LEP collected about 17 million Z bosons during its entire run, so
for discovery and measurements of the Higgs boson through direct
production with comparable precision to the Z boson, LEP would have had to
collect about 1017 events. For a benchmark, the LHC collides protons every
25 nanoseconds, or 40 million times a second. The LHC would need to run
continuously for about a century to possibly collect that many collision
events.

13.1.3 e+ e− → ZH
Needless to say, direct production of the Higgs boson in electron–positron
collisions is not a feasible method for discovery. This is because electrons
have extremely low mass compared to the vev v. As such, they couple very,
very weakly to the Higgs boson. For any hope of discovery of the Higgs
boson in e+ e− collisions, we need (1) the electrons and positrons to interact
relatively strongly and (2) the Higgs boson to couple to a very massive
particle. Thankfully, we know of one particle that can accomplish both tasks
at the same time: the Z boson. The Z boson couples to electrons relatively
strongly, and it has a large mass, and so couples to the Higgs boson relatively
strongly. The cost of this, however, is that a Z boson is produced in the final
state, along with the Higgs boson. We say that the Z boson is produced in
association with the Higgs. The Feynman diagram for the e+ e− → ZH
process is



Because of this associative production of the Higgs, its presence is not
manifest as a resonance as we scan over center-of-mass energies; instead, we
observe the Higgs boson due to a threshold energy for the process e+ e− →
ZH to occur. But we’re getting ahead of ourselves.

Let’s estimate the cross section for this associative process and see this
threshold explicitly. To evaluate the Feynman diagram above, we need to
determine the coupling of the Higgs boson to the Z boson. Recall from
Chapter 11 that in the electroweak theory we identified the mass of the Z
boson. The Z boson mass term in the Lagrangian is

(13.40)

This was found by setting the scalar field  equal to its vev v, and ignoring all
terms with the Higgs boson H(x). To find the coupling to the Higgs boson, all
we have to do is replace each instance of v with H(x). Because this term in
the Lagrangian is proportional to v2, we pick up two terms that are each linear
in the Higgs field H(x). Then, the coupling of the Z boson to the Higgs boson
is governed by the Lagrangian term

(13.41)

Therefore, the ZZH vertex in the Feynman diagram is proportional to the vev
v and a combination of the weak isospin and hypercharge couplings:

(13.42)



On the right, we have exchanged the vev v with the mass of the Z boson mZ,
which justifies the claim that the Higgs boson couples proportionally to the Z
boson’s mass. With this coupling, we know everything else in this Feynman
diagram, so we can evaluate it.

First, let’s calculate the Feynman diagram with an initial left-handed
electron and positron. This diagram is then

(13.43)

In this expression, we have used the propagator for a massive particle, as
developed in Section 11.3.4. Note also that the polarization vector of the Z
boson couples directly to the electron and positron spinors. This is because
the Higgs boson is spin-0, and so cannot affect the conservation of angular
momentum. Simplifying the expression for the matrix element, we have

(13.44)

While we won’t present the details here, the matrix element for the opposite
electron– positron helicity configuration is



(13.45)

Squaring these matrix elements, averaging over initial spins, and summing
over final spins, we then find

To continue, we need to evaluate the spinor products explicitly. However,
this is now not as easy as the case when the Z boson was the only final-state
particle, and so we won’t do it explicitly here. Nevertheless, we can extract
essentially everything we need in order to estimate the cross section for e+ e−

→ ZH, with a few observations. First, because the Z boson is unpolarized, the
spinor products are the same, just as in the case of e+ e− → Z:

(13.47)

Additionally, the spinor product  is just some function
of Lorentz-invariant combinations of the momenta that compose it. What
exactly this function is is not important; we just extract its mass dimension by
multiplying and dividing by the center-of-mass energy Ecm :

(13.48)

where here f(θ) is a function of the scattering angle, θ. Then, we can express
the squared matrix element in the compact form

(13.49)

Now, to calculate the cross section, we can put this expression into Fermi’s
Golden Rule. We have successfully extracted the scattering angle dependence



of the matrix element, so we can use the compact form of Fermi’s Golden
Rule for two-body phase space in the center-of-mass frame established in
Example 4.2 of Chapter 4. The cross section for e+ e− → ZH scattering is
thus

(13.50)

Here,  is the magnitude of three-momentum of the Z or Higgs boson in the
final state. It can be found by constructing its momentum consistent with
conservation laws. In particular, we can rotate to the frame in which we can
write the Z and Higgs momentum four-vectors as

(13.51)

which are both on-shell and have zero net three-momentum. To determine 
we use conservation of energy:

(13.52)

One finds that  is

(13.53)

The integral over the scattering angle is just some number, so let’s call it
cint :

(13.54)

This number may have dependence on the Z and Higgs boson masses, but we
ignore any residual dependence on them in cint. Then, after all this effort, the
cross section for the process e+ e− → ZH is



(13.55)

It may be unclear if all of this work was worth it, but let’s evaluate the overall
coupling dependence to see how relevant this term is. The dependence on the
couplings gW and gY is

(13.56)

where we use that gW = 0.642 and gY = 0.344. While this is a small number, it
is about eight orders of magnitude larger than the suppression of the direct
production process e+ e− → H! It is therefore much more feasible to discover
the Higgs boson in the associative process e+ e− → ZH.

Our procedure for discovering the Higgs boson and measuring its mass at a
lepton collider would then be the following. We scan over center-of-mass
energies for the electron–positron initial state Ecm and look for a Z boson in
the final state. We of course observe the resonance at Ecm = mZ, but the hope
is that at some higher energy, we will observe a threshold for Higgs boson
production. Note that the cross section calculated above is only non-zero if

(13.57)

So, at the center-of-mass energy where we observe the threshold Eth, the
Higgs boson mass is just mZ less than that:

(13.58)

This was the search strategy of the four experiments at LEP (ALEPH,
DELPHI, L3, and OPAL) through the end of its physics program. The
maximum center-of-mass collision energy of electrons and positrons at LEP
was (just over) 206 GeV, and so this would be the maximum threshold
energy that could be observed. Therefore, the maximum mass of the Higgs
boson that could just be detected at LEP is 91 GeV less than this, or about
115 GeV. The total integrated luminosity of data collected by LEP at the



highest energies was 536 pb−1, corresponding to a total of about 10,000 total
electron–positron collision events. (From the PDG, the total e+ e− collision
cross section at Ecm = 200 GeV is a few tens of picobarns.) Though this is a
relatively small number of events, it was sufficient to say with 95%
confidence that no such energy threshold was observed at LEP.4 Therefore, if
the Higgs boson exists, then LEP determined that its mass was larger than
about 115 GeV:

(13.59)



13.2 Searching for the Higgs Boson at Tevatron
and LHC
The LEP collider and associated experiments ended data collection in 2000
and no Higgs boson was found. At the time of LEP’s shutdown, the only
other high-energy particle collision experiment was the Tevatron, which was
located on the Illinois prairie at Fermi National Accelerator Laboratory
(Fermilab). The Tevatron collided protons and anti-protons at a maximum
center-of-mass energy of 1.96 TeV at two detectors: the CDF (Collider
Detector at Fermilab) and  (read: “dee-zero”) experiments. Until the
completion of the LHC, the Tevatron was the highest-energy and largest-
particle collision experiment in the world, with a 4-mile (6.4-kilometer)
circumference main accelerator ring. The greatest accomplishment of the
Tevatron by the early 2000s was the discovery of the top quark in 1995.5 An
aerial photo of the Tevatron ring and surrounding area of Fermilab is
presented in Fig. 13.1.

Tevatron had its sights on discovering the Higgs boson. With the lower
bound of 115 GeV established by LEP, the search region of the Tevatron was
narrowed, but there was still no firm upper bound on the Higgs boson mass.
The hope was that the nearly 2 TeV center-of-mass collision energy of the
Tevatron would be sufficient to produce the Higgs boson and verify its
existence with certainty. The production of the Higgs boson at a hadron
collider like Tevatron or LHC is very different than that at LEP, which in turn
implies that the search strategy of these experiments is different than that of
LEP. Though the Tevatron collided protons on anti-protons while the LHC
collides protons on protons, this difference is essentially irrelevant for the
dominant production mechanism of the Higgs boson at these experiments. As
such, in what follows we just discuss the production of the Higgs boson at a
proton–proton collider like the LHC, but will justify the claim that the
production at a proton–anti-proton collider would be the same.



Fig. 13.1 Aerial view of Fermilab. The Main Injector is the ring in the lower left of the photograph, the
Tevatron ring is visible in the upper-right, Wilson Hall (the main building at Fermilab) is the Brutalist
tower visible in the upper left, and the bison paddock is located at the top center of the image.

Box 13.1 Historical Profile: Benjamin Lee

Benjamin Lee was a Korean-American theoretical physicist. He earned his
Ph.D. in 1961 from the University of Pennsylvania, studying under
Abraham Klein. Lee is perhaps best known for work on developing a
robust upper bound on the mass of the Higgs boson of about 1 TeV, above
which the weak force would interact very differently than observed.6
Among a broad particle physics research program, Lee also predicted the
mass of the charmquark7 (along with Mary Gaillard) and provided
constraints fromcosmology on neutrino masses.8 In 1970, Lee lectured on
the weak force at the Cargèse Summer School located on the island of
Corsica, France. A young Gerardus ‘t Hooft was a student at that school,
and was inspired by Lee’s lecture to work on the theory of the weak force.
Lee moved to Fermilab in 1973, and became the head of its theory division
shortly thereafter. While traveling to Aspen, Colorado, from Fermilab in
1977 for a meeting, Lee tragically died in a car accident.



13.2.1 pp → H
As with any high-energy process at a proton collider, it is not the protons that
are directly responsible for the process, but rather their constituent quarks and
gluons. The simplest mechanism for the production of the Higgs boson at a
proton collider like the LHC would then be the direct process through the
interactions of quarks. A pseudo-Feynman diagram that represents such a
production process would be something like

(13.60)

where yq is the Yukawa coupling of the quark pulled from the proton. The
cross section for such a process is therefore proportional to  which is
problematic for the same reason as the process e+ e− → H studied in the
previous chapter: the Yukawa couplings of quarks in the proton are tiny! The
heaviest quark that exists in the proton in reasonable amounts is the strange
quark, which has a mass of ms ≃ 100 MeV (from the PDG, of course). The
strange-quark Yukawa coupling is therefore

(13.61)

When squared, this suppresses the cross section by a factor of about 10−7. So,
just as we found for the process e+ e− → H, the direct production of the
Higgs boson at a proton collider is extremely rare and therefore very
challenging to observe.

A possible resolution is to consider the process pp → ZH, similar to the
resolution for searching for the Higgs boson at LEP. This has a significantly



larger cross section than pp → H, but the discovery of the Higgs boson at a
proton collider via this process is almost impossible. Recall what the search
strategy was for discovering the Higgs boson in e+ e− → ZH. We are able to
control the center-of-mass energy of the electron–positron collision very
precisely, and scan over different energies looking for a threshold. The
threshold energy then corresponds to the sum of the Z and Higgs boson
masses. At a hadron collider we can use a similar technique, by scanning over
a range of proton collision center-of-mass energies. Now, however, we don’t
have control over the actual collision energy of the partons within the
colliding protons, so we don’t know what the partonic center-of-mass energy
was. The energy distribution of quarks and gluons in the proton is determined
by the parton distribution functions. As a consequence, scanning for
threshold energies is very subtle at a hadron collider, since these do not
manifest in a clearly useful way as they did at LEP. Thus, searching for the
Higgs as a resonance – or bump hunting – at a hadron collider is a much
more fruitful approach.

Gluon–Gluon Fusion

That said, from the estimation above, we can’t expect to produce a sufficient
number of Higgs bosons from the partonic process qq → H, as the Yukawa
couplings of quarks in the proton are extremely small. How can we produce
the Higgs boson at a hadron collider in numbers that enable discovery? From
the s-channel (resonant) production of the Higgs boson, let’s work backward
to see how this can be done. To produce a Higgs boson via a process with a
large cross section, the Higgs should couple to as massive a particle as
possible. The more massive the particle, the stronger the coupling. So, let’s
couple the Higgs to the most massive particle of the Standard Model, the top
quark. The mass of the top quark is mt = 173.1 GeV and so its Yukawa
coupling is

(13.62)

Coupling a Higgs to top quarks is unsuppressed. So, to produce the Higgs
boson with the largest possible cross section, we want to do it through top
quarks as



(13.63)

At a hadron collider, then, how do we produce top quarks? With a mass
that’s about 175 times that of the proton, there’s no way that the top quark
can be a parton in the proton. Instead, we need a method to produce top
quarks from honest constituents of the proton. Gluons, of course, couple to
top quarks, and gluons exist in copious amounts in the proton. So, we can use
gluons to produce top quarks, but this comes at a price. Just as electrons emit
photons, top quarks can emit gluons, and so each gluon from the protons
splits into a top quark and an anti-top quark. One possible diagram
representing this process is

but this actually corresponds to the process pp → ttH, which is not what we
want. We’re very close, though; we just need to eliminate the top and anti-top
quarks from the final state. We can accomplish this by connecting them into a
loop of top quarks. That is, the diagram that just corresponds to pp → H
through gluons is



This diagram is special; topologically, it has a loop of top quarks, and so is
referred to as a one-loop diagram. This loop of top quarks accomplishes a
specific task. Gluons, which are massless and numerous in the proton, are
coupled to the Higgs boson, whose strength of interaction with particles is
proportional to their mass. In the Lagrangian of the Standard Model, there is
no direct coupling of the Higgs boson to gluons, because gluons
are massless. Another way to say this is that gluons do not appear in the
classical equations of motion for the Higgs boson. However, particle physics
is quantum mechanical, and the Heisenberg uncertainty principle allows for
the production of virtual top quarks that connect gluons to the Higgs boson.
For the production of the Higgs boson at a hadron collider, this quantum
mechanical property is absolutely vital. If ħ = 0, the value of this diagram
would be zero. We’ll see how this works in a second.

Let’s estimate the matrix element of the process gg → H and the
corresponding value of the cross section for the process pp → H through a
top quark loop in the following example.

Example 13.2 What is the matrix element for the process pp → H through a
top quark loop?

Solution

Let’s first collect all of the coupling factors. As identified earlier, the
coupling of the top quark to the Higgs boson is proportional to the Yukawa
coupling of the top quark, yt ≃ 1. The coupling of gluons to top quarks is
proportional to the coupling constant of the strong force,  So, the
matrix element for the process gg → H is proportional to
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So far, the factors we have identified in the matrix element are dimensionless,
and we will need to include appropriate energy factors to get the dimensions
correct. To determine the mass dimension of the matrix element, recall that
the phase space integral in Fermi’s Golden Rule has mass dimension 0:

(13.65)

Here, pH is the four-momentum of the Higgs boson and p1 and p2 are the
four-momenta of the initial gluons. For this to have the correct mass
dimension, the matrix element must have mass dimension 1. (Recall that δ-
functions have mass dimension equal to the inverse mass dimension of their
argument.) So, we need to account for this mass dimension.

Let’s consider what happens if the mass of the top quark mt → ∞. In this
limit, the Compton wavelength of the top quark goes to 0 and the virtual top
quarks in the loop exist for zero time. Thus, the matrix element must vanish,
because there is zero probability that the infinitely massive virtual top quarks
could mediate this interaction. Therefore, the matrix element is proportional
to an inverse power of the top quark mass:

(13.66)

where a > 0. Additionally, in the limit that mt → ∞, the only relevant mass
scale of the weak force is the Higgs vev, v. The quark masses in the Standard
Model are a consequence of the Higgs mechanism and are proportional to the
Higgs vev. That is, the only mechanism in the Standard Model for mt → ∞ is
if the vev also diverges: v → ∞. If the top quark Yukawa coupling yt were to
diverge, the Higgs mechanism could not account for this
phenomenon, as the Yukawa coupling is just a parameter in the Standard
Model. Therefore, the power a must be such that the matrix element is only a
function of the vev v. As

(13.67)



we find that a = 1. As written, the matrix element doesn’t yet have mass
dimension 1. The only other relevant mass scale in this matrix element is the
Higgs boson mass, and this must account for the difference in mass
dimension. That is,

(13.68)

which has the correct mass dimension.
With dimensional analysis, we have identified the dependence of the

matrix element M(gg → H) on the various couplings and masses relevant to

the process. Our argument for the dependence on the top quark and Higgs
boson masses relied on the limit of mt → ∞, or the limit in which mH ≪ mt.
Relaxing this assumption allows for dependence on an arbitrary function of
the ratio mH /mt, but we will see that mH ≪ mt is justified experimentally. So,
we won’t consider any other mass dependence. However, as the diagram for
the process gg → H contains a loop, there are additional pure number factors
that should be included to accurately estimate the value of the matrix
element. These factors can be systematically determined with a procedure
called naïve dimensional analysis, or NDA.9 For every loop in a Feynman
diagram, NDA states that we should multiply by a factor of 1/(4π)2. Doing
this, the final result for the matrix element is

(13.69)

While the rules of NDA can be derived directly from consideration of the
mathematical expression for the Feynman diagram with a loop, we will
provide some motivation of this 1/(4π)2 factor.

Unlike the diagrams that we studied and calculated before, the loop in this
diagram has an unconstrained momentum flowing around it. Let’s see how
this works. With the gluons’ momenta denoted by p1 and p2, the momentum
of the Higgs boson is therefore pH = p1 + p2. Enforcing momentum
conservation at every vertex, we then find that the momentum in the loop is



The momentum p is the unconstrained, arbitrary momentum. By the rules of
quantum mechanics, we must sum over all possibilities consistent with
measurement, which corresponds to an improper integral over all four-
momentum components of p. As with the discussion of Fermi’s Golden Rule
and Lorentz-invariant phase space in Chapter 4, whenever we integrate over
the four-momentum components, there is an associated factor of 1/(2π)4 in
the integration measure. This factor comes from Fourier transforming from
position space x to momentum space p, and ensures that inverse Fourier
transforming back to position space has the proper normalization. The NDA
factor of 1/(4π)2 comes from this Fourier-transform normalization.

With the matrix element established, we can now evaluate the cross
section. Using Fermi’s Golden Rule and the one-body phase space integral
established in previous sections, the cross section for the process gg → H is

The combination of overall couplings and numerical factors is approximately

(13.71)

where we have used the value of the strong coupling, αs = 0.118, established
by the PDG evaluated at the Z boson mass. This is several orders of
magnitude larger than direct production of the Higgs boson from quarks
considered earlier, and will be central for discovery of the Higgs.



To predict the cross section for the process pp → H, we need to include the
probability of pulling gluons out of protons. This is accomplished by the
gluon parton distribution function fg (x). The squared partonic center-of-mass
energy ŝ is related to the squared proton center-of-mass energy s by

(13.72)

where x1 and x2 are the momentum fractions of the gluons with respect to the
protons’ momenta. Then, the cross section differential in both x1 and x2 is

(13.73)

Finally, the total cross section for Higgs boson production from proton–
proton collisions through a top quark loop is

(13.74)

The integral can be massaged and simplified, but to completely evaluate it
requires a functional form of the gluon parton distribution function, fg (x).
This is the exact same value of the cross section of Higgs boson production
as at the Tevatron, pp → H. Anti-protons are (obviously) the anti-particles of
protons, and so we should replace one of the gluon parton distributions with
the anti-gluon’s parton distribution. However, the gluon is its own anti-
particle, so the cross section is unchanged.

This process for producing a Higgs boson is called gluon–gluon fusion.
The diagram that provides the first non-zero contribution to a cross section of
interest with the fewest number of loops is called a leading order diagram.
For many processes, like e+ e− → μ+ μ−, leading order diagrams are also
called tree diagrams, which have no loops and look topologically like trees.
For Higgs production, however, the leading order diagram has one loop. As
more loops are added, one builds up a better and better approximation to the
desired result. One refers to diagrams with more loops as next-to-leading
(one more loop), next-to-next-to-leading (one further loop, NNLO for short),
etc. The state-of-the-art high-precision calculations are now being performed
at next-to-next-to-next-to-leading order (N3 LO; read “N-three-ell-oh”),



which adds three (!) loops to the leading order diagram. These are Herculean
calculations that require teams to complete. The first N3 LO calculation was
presented for Higgs production in 2015.10

13.2.2 pp → H → W+ W−

Hadron colliders are often colloquially referred to as discovery machines
because protons can be collided at enormous center-of-mass energies and the
collision energy of the individual partons can range over many decades. With
the production of the Higgs boson understood, we want to use this powerful
lever to focus our search for the Higgs boson. From LEP, we were able to
establish a general and robust lower bound on the Higgs mass; can we
establish a similarly robust upper bound at a hadron collider?

The Higgs boson is an unstable particle and decays almost immediately
after it is produced, so we can only identify it through its decay products. Our
strategy for establishing an upper bound on the Higgs boson mass is to search
for evidence of a Higgs boson decay to massive particles. With the lower
bound from LEP of mH > 115 GeV, we want as low an upper bound as
possible. The Higgs boson decays to pairs of massive particles, and so the
upper bound we are looking for will be twice the mass of a decay product.
The lightest particle of the Standard Model with twice its mass greater than
115 GeV is the W boson, mW ≃ 80 GeV. So, looking for Higgs boson decays
to W bosons enables us to establish an upper bound on the Higgs boson mass
of about 160 GeV. Actually, we are able to do better than this: the W boson
itself is an unstable particle, so we look for the decay products of W bosons at
invariant masses a bit below the threshold for on-shell W+ W− production.

What makes this search powerful is that W bosons decay to both quarks
and leptons of the Standard Model. So, we have our choice of which decay
products to measure and attempt to discover the Higgs boson. Searching for
W bosons through their decays to quarks is especially challenging. While it is
true that the W boson decays to quarks nearly 70% of the time, in an
experiment, quarks manifest themselves as hadronic jets. So, if we look for
the Higgs boson through hadronic decays of the W boson, the process that we
would see in our detector would be pp → four jets, with the transverse
momentum of each of the jets about half the W boson mass, 40 GeV. This is
problematic because the rate for such a process to occur through standard



QCD channels is enormous: it is very easy at the LHC to produce many,
relatively low-energy, jets. Whatever signal we would be looking for would
be overwhelmed by background.

Instead of hadronic W decays, we then focus on leptonic W decays. We do
take a hit to the rate of leptonic decays, but this is more than made up for by
the extremely clean and low-background final state. The W boson couples
charged leptons (electrons, muons, taus) to their corresponding neutrinos, so
the leptonic decay channel process is

where l and l′ are two flavors of leptons. The pseudo-Feynman diagram that
represents this process is

Electrons and muons are stable on time and distance scales measured at the
LHC’s detectors, so they can be identified by their charged track and a
deposit in the electromagnetic calorimetry (for electrons) or as a track in the
muon chamber (for muons). (Tau leptons decay quickly, and introduce
additional experimental challenges and so are ignored for now.) The two
final-state neutrinos cannot, of course, be directly measured in the detector.
Indirectly, we would infer their existence by the measurement of missing
transverse momentum (MET). A complication of this final state is that there
are two neutrinos and therefore the MET is the vector sum of the momentum
of the neutrinos, and not the momentum of a single neutrino. Nevertheless,



this subtlety is worth the cost because it is so easy to cleanly identify the
charged leptons, and therefore to significantly reduce the possible
backgrounds.

So, our experimental task is clear: we look for the process

where l and l′ are electrons or muons, in our detector and compare the rate for
this process in the Standard Model with and without the assumption of the
existence of the Higgs boson. The mass of the Higgs boson can be inferred
from a measurement of the invariant mass of the leptons and missing
transverse momentum of the final state. This is of course complicated by the
fact that only two components of the missing transverse momentum are
constrained by momentum conservation and the individual neutrinos’
momenta is not resolved. Nevertheless, in Exercise 13.3, you will study this
configuration and show that the mass of the Higgs boson can be identified
from this final state.

The experiments at Tevatron and LHC employed this Higgs boson search
strategy in their data collected through the end of 2011. Their corresponding
analyses were all published by mid-2012, and no Higgs boson was found by
searching for decays through W bosons.11 A robust upper bound on the Higgs
mass was established to be about 140 GeV at these hadron colliders.
Combined with the lower bound from LEP, the window in which the Higgs
boson could exist was getting extremely narrow by July 2012:

(13.75)

13.2.3 The Golden Channels: pp → H → γ γ and pp → H → 4ℓ
Either the Standard Model Higgs boson has a mass in the window established
by LEP, Tevatron, and LHC, or it does not exist. To unambiguously discover
the Higgs boson, we want to clearly observe a resonance mass peak. This
requires that all final-state particles from Higgs boson decay be visible in the
detector, so there can’t be any neutrinos produced. Additionally, we want
small backgrounds and clear final-state particle identification, so we don’t
want any jets. These requirements eliminate the H → W+ W− decay channel
as a vehicle for discovery. (Observing this decay is vital for verifying that the



Higgs boson is indeed the Higgs boson, however.) We also want the decay
mode to have a reasonably large rate, otherwise it will be very hard to collect
enough candidate events. This eliminates direct Higgs decays to leptons, as
their small masses mean very small couplings to the Higgs. The Higgs can,
however, decay to four charged leptons through Z bosons in the process

Z bosons have a large coupling to the Higgs because of their large mass, and
Z bosons decay to electrons or muons about 7% of the time. The cost of this
decay is that at least one of the Z bosons must be off-shell, as the largest
possible Higgs mass is less than two times the Z boson mass. The Feynman
diagram for this decay of the Higgs boson is

For ease of detection, the leptons l and l′ are electrons or muons.
A leptonic final state isn’t the only configuration that satisfies the

requirements for discovery established above. The Higgs boson can also
decay to photons, H → γγ. Just like the production mechanism through
gluons, there is no Lagrangian coupling of the Higgs boson to photons,
because the photons are massless. However, the Higgs boson couples
strongly to the top quark, and top quarks carry electric charge, and so can
radiate photons. Photons have a very clean signature in the detector: as they
are uncharged, they leave no track, but deposit all of their energy in the
electromagnetic calorimeter. An additional feature of the pp → H → γγ



process is that the background process pp → γγ for direct production of two
photons in the Standard Model has no intrinsic mass scales associated with it.
Photons are massless and they can just be emitted from any charged particle,
so the background distribution must be smooth with no resonances or
thresholds. Therefore, a resonance from Higgs decay will clearly stick out
above background. The Feynman diagram for Higgs decay to photons is

These two Higgs decay modes, H →four leptons and H → γγ, are
colloquially referred to as the golden channels because they have a distinct
experimental signature, small backgrounds, and an unambiguous resonance
peak if the Higgs does indeed exist. The ATLAS and CMS experiments at the
LHC extensively measured these golden channels in the established mass
window in search for the Higgs boson. On July 4, 2012, in back-to-back
presentations, the spokespersons for CMS and ATLAS, Joseph Incandela and
Fabiola Gianotti, conclusively demonstrated that each of their experiments
had discovered the Higgs boson with greater than 5σ significance. Rolf-
Dieter Heuer, the CERN Director-General at the time, remarked after the
presentations, “As a layman, I would say, I think we have it!”

Box 13.2 Historical Profile: Discovery of the Higgs Boson

While there was some evidence that the Higgs boson existed, on July 3,
2012 the excitement and anticipation at CERN was not at the level you
would expect for the discovery of a new particle. A press conference was
scheduled for the following day, with an update on the search for the Higgs
boson by ATLAS and CMS. In preparation, Peter Higgs and François
Englert were invited to CERN.

The presentations were scheduled for 9 a.m. on July 4 in the main
auditorium at CERN, which seats about 200 people. Many of these seats
were reserved for various dignitaries and CERN administration, and the
remaining seats were on a first-come basis. Some people, mostly youthful



graduate students and postdoctoral researchers, had camped out by the
doors of the auditorium by 11 p.m. By 6 a.m. on July 4, there were several
hundred people waiting in line for a seat, and by 9 a.m., there were
probably in excess of 1000 people in a line that snaked through the
cafeteria.

For those that did not get a seat in the auditorium, the event was live-
streamed on the Internet, and many institutions throughout the world had
organized viewing parties. In the United States, this meant watching the
results in the wee hours of July 4. A major international particle physics
conference, the International Conference for High Energy Physics
(ICHEP), was taking place concurrently in Melbourne, Australia. The
ATLAS and CMS collaborations, and even groups and subgroups within
them, were so successfully tight-lipped that very few people knew or
anticipated what would be presented.

The announcement of both experiments establishing 5σ evidence for the
Higgs boson was astounding, and eliminated any doubts as to the Higgs
boson’s existence. The Higgs of the Standard Model was firmly
established and the state of CERN after 10 a.m. on July 4, 2012 was one of
shock, amazement, and success.

Evidence of Discovery

The primary evidence that Incandela and Gianotti presented on behalf of
CMS and ATLAS for the discovery of the Higgs boson were the invariant
mass distributions for the H → four leptons and H → γγ decays. Starting with
the H → four leptons channel, the measurement by the CMS collaboration is
presented in Fig. 13.2. To ensure that the final state could have come from a
Higgs decay, CMS required that the four leptons were electrons or muons,
two were positively charged and two were negatively charged, and that pairs
of opposite-signed charged leptons were the same flavor. The main plot
shows the invariant mass of the four leptons m4ℓ versus the number of events
at that mass that were observed, ranging from about 70 GeV to 180 GeV.
There is a clear resonance at about 90 GeV, which corresponds to the Z
boson. The Z boson couples to itself and so can decay to four leptons through
two off-shell Z bosons. At high masses, the number of events is seen to rise,
corresponding to threshold production of a pair of Z bosons around 180 GeV



(≃ 2mZ). The shaded regions correspond to an estimate of the background
hypothesis for this distribution corresponding to no Higgs boson existing.

Fig. 13.2 Plot of the four-lepton invariant mass m4ℓ versus the number of measured events by the CMS
experiment. The data points come from a total of about 10 inverse femtobarns collected by CMS at
center-of-mass collision energies of both 7 and 8 TeV. Reprinted from Phys. Lett. B 716, S. Chatrchyan
et al. [CMS Collaboration], “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC,” 30 (2012), with permission from Elsevier.

At a mass of about 125 GeV, however, there is a clear excess of events
above the expected shaded background. While this excess doesn’t seem to be
much, 10 events were observed in the range between 120 and 130 GeV,
compared to an expected number of about 4 events. Assuming Poisson
statistics, this is an excess of 3σ. Importantly, however note, that this is the
local significance, not the global significance. The location of the excess was
not known beforehand, and could have in principle been anywhere in the
allowed range of 115 to 140 GeV. This is referred to as the look-elsewhere
effect and has the consequence of reducing the global significance versus the
local significance. (See Exercise 5.6 of Chapter 5 for details.) The plot in the
inset of Fig. 13.2 shows the same data over a narrower mass range with the



restriction that those events have additional requirements on them that force
them to look more like they came from the Standard Model Higgs boson.
This has the effect of reducing the number of events in the 120– 130 GeV
window to five, but the expected number of events (the integral of the shaded
region) is reduced to about one over that same range. The local significance
(not including the look-elsewhere effect) is now about 4σ!

A plot of the invariant mass of two photons versus the number of events
from the search for the H → γγ decay by the ATLAS collaboration is
presented in Fig. 13.3. The range of di-photon masses mγγ in this plot extends
from 100 to 160 GeV, and the background distribution corresponding to
direct photon production (modeled by the dashed curve) is smooth with no
structure, as expected. On top of this background, there is a clear excess of
events at around 125 GeV, the same mass where there was an excess in the
m4ℓ distribution.



Fig. 13.3 Plots of the di-photon invariant mass mγγ versus the number of measured events by the
ATLAS experiment. The data points come from a total of about 10 inverse femtobarns collected by
ATLAS at center-of-mass collision energies of both 7 and 8 TeV. The upper plot shows the raw
number of events as a function of mγγ while the bottom plot enhances the excess near 125 GeV by
weighting the events. Reprinted from Phys. Lett. B 716, G. Aad et al. [ATLAS Collaboration],
“Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS
detector at the LHC,” 1 (2012), with permission from Elsevier.

Focusing on the upper plot, in the mass range of 123–129 GeV about 8400
events were observed, while only about 8000 events were expected, assuming



that there is no Standard Model Higgs boson. The statistical standard
deviation of the expected number of events is therefore about 90 events, so
this excess has a significance of nearly 5σ alone! Note that there is no look-
elsewhere effect in these data. From the H → four leptons search, we had
already determined that masses near 125 GeV were interesting, so only if the
diphoton masses exhibited an excess in this region would such an excess
provide additional evidence for the Higgs boson.

These two results from H → four leptons and H → γγ searches were then
combined by both experiments separately to establish their evidence for
existence of the Higgs boson. The combined summary plots from ATLAS are
shown in Fig. 13.4. The top two plots are the most relevant for our discussion
here; the bottom plot presents the interpretation of these results. First, the top
plot. Such a plot is colloquially referred to as a Brazil plot because of its
(admittedly weak) similarity to the colors (green and yellow in the color
version) of the Brazilian flag. This plot shows the 95% confidence limit (2σ)
on the signal strength μ versus the corresponding mass of the Higgs boson,
mH. The signal strength μ is 0 if the Higgs boson does not exist and 1 if the
Higgs is exactly as assumed in the Standard Model. A different value of μ
corresponds to a Higgs boson with properties different than that of the
Standard Model. The dashed line is the expected limit on μ as established by
simulating events at the LHC assuming the absence of the existence of a
Higgs boson. The shaded bands around this are the 1σ and 2σ uncertainties in
the expected limit. The solid curve is the established limit on μ from data, and
over most of the mass range, this measured limit lies comfortably within the
1σ uncertainties. However, there is a huge excess around a mass of 125 GeV,
implying that such a limit on μ can’t be established. That is, at a mass of
around 125 GeV, the data are not consistent with the null hypothesis of there
being no Higgs boson.



Fig. 13.4 Summary plots of ATLAS’s combination of searches in the H → four leptons and H → γγ
channels. The top two plots demonstrate a nearly 6σ excess over background. Reprinted from Phys.
Lett. B 716, G. Aad et al. [ATLAS Collaboration], “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC,” 1 (2012), with permission from
Elsevier.



This is quantified a bit more in the middle plot. This plot shows the local
p-value of the data from the null hypothesis (i.e., no Higgs boson) versus
mass, mH. The p-value is the probability that the null hypothesis could
produce an excess at least as large as the observed excess. Over the vast
majority of the mass range this p-value is large (at the level of tens of
percent), meaning that the probability for the null hypothesis to explain the
data is high. However, at a mass of about 125 GeV, the p-value takes a
nosedive, and gets down to about 10−9. That is, there is a probability of about
1 in 1 billion that the excesses observed at mH ≃ 125 GeV could be explained
by the null hypothesis. This corresponds to a local significance of about 6σ.
The look-elsewhere effect will reduce this significance slightly, but cannot
remove it. Thus these results establish, with greater than 5σ confidence at
both ATLAS and CMS, that the Higgs boson exists. Combining
measurements from ATLAS and CMS yields the Higgs boson mass mH to be

(13.76)

The first uncertainty is statistical while the second is an estimate of
systematic uncertainty in the measurement.

Example 13.3 Can we estimate how ATLAS did this combination of
searches for the Higgs boson in the two golden channels? Specifically, let’s
consider two measurements A and B in which there are  events expected
from the null hypothesis for A and  events actually measured for A (and
similarly for B). What is the σ deviation from the null hypothesis for the
combination of measurements A and B? Assume that the measurements are
uncorrelated and that  and  are very large.

Solution

This problem asks for the statistical significance or probability that two
outcomes occurred. This is an “and” statement in probability, meaning that
the probability for both to occur is just the product of each individually
happening. Importantly, this joint probability is simply the product of
probabilities because we assume that measurements A and B are uncorrelated.
This means that knowledge about one measurement tells you nothing about



the other measurement. If there were correlation between measurements, this
would complicate the analysis we present here, and in general decrease the
effect that we find.

With those caveats out of the way, let’s determine the probability for each
of these measurements. As always, we assume Poisson statistics, so that the
standard deviation on a measurement of N events is  Thus, the number of
standard deviations of measurements A and B from their null hypotheses σA
and σB is

(13.77)

The subscripts meas and exp represent the measured and expected number of
events, respectively. Because we assume that the expected number of events
is large, we can approximate the distribution as Gaussian. The probability
that there was a fluctuation in the null hypotheses at least as large as σA and
σB is the product of their p-values:

(13.78)

We could end here, but it is common practice (though somewhat
misleading) to reinterpret this p-value itself in σ deviation from the null
hypothesis. There’s really no elegant way to do this, but we want to solve for
the deviation σA&B such that

(13.79)

We can solve for σA&B by evaluating the right side of this equation and then
adjusting the value of σA&B in the integral on the left to equal it.



13.3 Properties of the Higgs Boson
The discovery of the Higgs boson was based simply on observation of two of
its decay modes. To verify that this particle is indeed the Higgs boson of the
Standard Model, we need to observe many more decay modes and properties.
While we survey a few of these validation measurements here, there are still
numerous experimental questions to be answered about the Higgs boson.
Nevertheless, every measurement performed so far is consistent with the
Standard Model Higgs boson.

13.3.1 Scalar Potential Coupling λ
The form of the Higgs boson potential V(H) is what is ultimately responsible
for the spontaneous symmetry breaking of the electroweak theory. Recall that
the potential is

(13.80)

where λ is the quartic Higgs coupling. The vev v = 246 GeV sets the mass
scale of the electroweak bosons; the mass of the Higgs from this potential is

(13.81)

With a measured value for the Higgs boson mass of mH ≃ 125 GeV, we then
extract the value of λ to be

(13.82)

It is important to emphasize that this is an extraction of λ, and not a
measurement. The value of λ also determines the strength of coupling of three
and four Higgs bosons to one another. A measurement of λ, and therefore a
validation of the Higgs potential of the Standard Model, Eq. 13.80, requires
measuring the coupling of multiple Higgs bosons. So, to measure λ, we not
only need to observe the production of one Higgs boson to measure its mass,
but also of two and three Higgs bosons to ensure that the rate for those



processes is controlled by λ. No such observation of multiple Higgs
production exists, so ATLAS and CMS are only able to place (weak) limits
on the value of λ from these searches. We will discuss more about the
searches for multi-Higgs production and the Higgs potential in the following
chapter.

13.3.2 Coupling Strength Proportional to Mass
A robust prediction of the Standard Model Higgs boson is that its couplings
to fermions and electroweak bosons are proportional to the masses of those
particles. That is, in the Standard Model Lagrangian, the Higgs couples to
particles via

(13.83)

where f is any fermion of the Standard Model (quark or lepton). By
measuring the rates at which the Higgs boson decays through different
particles, we are able to experimentally determine the coupling strengths to
fermions and electroweak bosons. This approach is limited, however, by the
fact that fermion masses can be very, very small compared to the vev, and so
decay of Higgs boson to light fermions is extremely rare. Nevertheless, for
fermions with masses of hundreds of MeV and above, the LHC should collect
enough data to measure their Yukawa couplings.

As of now, ATLAS and CMS have been able to set bounds on Higgs boson
couplings to fermions, and a combination of their results is presented in Fig.
13.5. This plot shows the coupling strength of the particle to the Higgs (for
fermions, the Yukawa coupling) versus the mass of the particle. The Standard
Model prediction is shown by the dashed line, corresponding to a 1-to-1
relationship. For the muon, tau lepton, and bottom quark, the Yukawa
couplings are determined by direct searches for Higgs decays to these
particles. For the W and Z bosons, the coupling to the Higgs bosons is
determined by searches for four-lepton final states, as we have discussed
earlier in this chapter. Determining the Yukawa coupling of the top quark to
the Higgs boson is much more challenging. This is accomplished by multiple
fits to various Higgs production processes in which the top quark is essential,
such as gluon–gluon fusion through a loop of top quarks. There is excellent



agreement between the Standard Model prediction and measured values, but
note that Fig. 13.5 is a log–log plot. The experimental results still have
substantially large uncertainties, which are suppressed on this display of the
plot. So, there is still a possibility of deviations from Standard Model
predictions that may hint at new physical processes, but, for now, everything
is nicely consistent with expectation.

Fig. 13.5 Plot of the coupling of the Higgs boson to particles of the Standard Model as a function of
particle mass. The Standard Model prediction is the dashed line, corresponding to a 1-to-1 relationship.
From G. Aad et al. [ATLAS and CMS Collaborations], “Measurements of the Higgs boson production
and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the
LHC pp collision data at  and 8 TeV,” J.High Energy Phys. 1608, 045 (2016)
[arXiv:1606.02266 [hep-ex]].

13.3.3 Spin-0
A very generic prediction of spontaneous breaking of electroweak symmetry
is that the Higgs is a spin-0 particle. (See Exercise 11.2 of Chapter 11 for an
argument why.) However, just the observation of decays to four leptons or
two photons only provides limited constraints on the spin of this newly
discovered particle. First, we directly observe decays to particles of the same



spin (the two photons, for example), and so the new particle must be a boson,
with integer intrinsic spin. So, it could have spin 0, spin 1, or spin 2. Higher
spins than 2 are also possible, but typically not considered because there is no
consistent way to couple a high-spin point particle to other particles in a
Lorentz-invariant quantum field theory.12 Further, the Higgs boson cannot be
a spin-1 particle because of a result known as the Landau–Yang theorem.13

The Landau–Yang theorem states that there is no way for a massive spin-1
particle to decay to two identical massless spin-1 particles. As we have
observed this new particle decay to two photons (identical, massless, spin-1
particles), the Landau–Yang theorem prohibits it from being spin-1. You will
prove the Landau–Yang theorem in Exercise 13.6. So, just from the
observation that this new particle decays to two photons, we have argued that
its spin can only be 0 or 2!

To determine whether this new particle is spin-0 or spin-2, there are a few
things we can do. A higher-spin particle has more degrees of freedom as it
has more spin states. As such, the production cross section of a high-spin
particle will be larger than a low-spin particle. So, a measurement of the cross
section can provide constraints on the spin of the particle. This is a bit
challenging, however, because one can also change the values of couplings to
affect the production cross section. A more direct method for measuring the
spin is to study angular distributions of the final state. We are familiar with
angular distributions containing information about spin. Because muons are
spin-1/2 particles, we observed a characteristic 1 + cos2 θ distribution of
events at an angle θ with respect to the electron–positron beam. This was
used to argue that quarks, through jet production, are also spin-1/2 particles.
We can do a similar thing for the Higgs boson at a hadron collider, though we
have to be a bit careful.

We need to define relevant angles for the Higgs production and decay
process. Because all final-state particles from Higgs decay are measured, we
can boost to the frame in which the Higgs is at rest. We assume that this can
be done by boosting exclusively along the proton beam axis, which is a good
approximation as the transverse momentum of the Higgs will almost always
be small compared to its mass. From this set-up, Fig. 13.6 shows the relevant
angles of the process, specifically for pp → H → four leptons. The angles
that we consider here are θ∗, the angle between the two photons or Z bosons
from Higgs decay to the proton beam, and Φ, the angle between the planes



defined by the pairs of leptons from the subsequent Z boson decays. Let’s
first analyze the difference in dependence of this process on θ∗ if the Higgs is
spin-0 versus spin-2.

Fig. 13.6 Figure illustrating the relative angles between pairs of final-state leptons from a H → four
leptons decay. In the frame where the Higgs boson is at rest, θ∗ is the angle between the proton beam
and the direction of momentum of one pair of leptons and Φ is the relative angle between the planes
defined by the momenta of pairs of leptons and their net momentum. From G. Aad et al. [ATLAS
Collaboration], “Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS
detector,” Eur. Phys. J. C 75, no. 10, 476 (2015), Erratum: [Eur. Phys. J. C 76, no. 3, 152 (2016)]
[arXiv:1506.05669 [hep-ex]].

For the process gg → H → γγ, a configuration of gluon and photons spins
that corresponds to a spin-0 Higgs boson is the following: Because the Higgs
has spin 0, the spins of the gluons must be anti-aligned, so their sum is, of
course, 0. Similarly, the spins of the photons must also be anti-aligned. This
correlation between spins is an example of entanglement: if one of the
photons is measured to have right-handed helicity (as in the figure), then the
helicity of the other photon must also be right-handed. Also, note that the



spins of the photons are completely uncorrelated with the spins of the gluons
(other than both of their net spins being 0). Regardless of the angle θ∗, the
projection of the photon spins onto the gluons’ axis always sums to 0.
Another way to say this is that, in the evaluation of the matrix element for the
process gg → H → γγ with a spin-0 Higgs, the dependence on the gluons’
and photons’ polarization vectors is

(13.84)

where g1 and g2 are the two gluons, for example, and their polarization
vectors are complex conjugated because they are in the initial state. This
matrix element is therefore independent of θ∗ because, by momentum
conservation, the two gluons’ and two photons’ momenta are back-to-back.

The case if the Higgs boson is spin-2 is quite different. Here is an example
of spin configurations that can exist if the Higgs boson is spin-2:

Now, the gluons’ and photons’ spins are aligned. Because the initial state has
net spin 2 pointing to the left, only the component of the photons’ spins with
the same net spin contributes to the matrix element, by angular momentum
conservation. If θ∗ = 0, the photon spins are perfectly aligned with the gluon
spins, so that configuration has high probability for occurring. By contrast, if



θ∗ = π, the photon spins are anti-aligned with the gluon spins, and there is
zero component of the photon spins in the direction of initial angular
momentum. Therefore, this configuration has zero probability of occurring
because angular momentum cannot be conserved. This suggests that the
matrix element for this configuration of spins for a spin-2 Higgs boson is

(13.85)

Note that this matrix element is symmetric in 1 ↔ 2, which it must be
because gluons and photons are both bosons. Because this matrix element
consists of mixed dot products of polarization vectors of gluons and photons,
there will be non-trivial dependence on the angle θ∗. You will determine the
functional dependence on θ∗ for this collection of spins in Exercise 13.8. This
matrix element is therefore different than the spin-0 hypothesis, and the
distribution of θ∗ can be measured to distinguish the two hypotheses.

While we won’t discuss it in detail, one can also measure the angle Φ
between the planes defined by the pairs of leptons from H → four leptons
decays. The pairs of leptons that should be correlated to define a plane are
identified in experiment by studying the process H → e+ e− μ+ μ−. The angle
between the electron plane and the muon plane contains information about
the spin of the Higgs boson, and the spin-0 and spin-2 hypotheses will have
different distributions. Using these and other angular distributions, the
ATLAS and CMS experiments have tested spin-0 and spin-2 hypotheses and
find agreement with the Standard Model prediction of a spin-0 Higgs boson
at 99.9% confidence (3σ). Nevertheless, this is a very subtle procedure that
requires specific assumptions about modeling the spin-2 hypothetical Higgs
boson. Because of this challenge, while all current evidence is strongly in
favor of a spin-0 Higgs, the PDG has not yet established an official
determination of the spin of the Higgs.



Exercises
13.1 W Boson Decays. The W boson decays to hadrons about 70% of the

time, while it decays to leptons the remaining 30% of the time. In
searching for the Higgs boson through H → W+ W−, how often is the
final state composed exclusively of leptons? How often is it
composed exclusively of hadrons? The semileptonic decay of the
Higgs corresponds to one W boson decaying to leptons and the other
to hadrons. How often does this semileptonic decay occur?
Hint: Do the probabilities add up to 1?

13.2 pp → W+ W− Backgrounds. Estimate the cross section at the 13 TeV
LHC in picobarns for the process  in the
Standard Model. Use the Stairway to Heaven plot from Exercise 4.7
of Chapter 4 and the fact that the W boson decays to leptons about
30% of the time.

13.3 Searching for H → W+ W−. To set a robust experimental upper bound
on the mass of the Higgs boson, we look for its decays through pairs
of W bosons, which subsequently decay to leptons. This is a bit tricky
because decays of W bosons produce neutrinos, which aren’t directly
measured. Nevertheless, the charged leptons from the W decays still
contain a significant amount of information about the Higgs boson,
which we will explore in this exercise.

(a) Consider the following possible decay of the Higgs:

(13.86)

Assume that the Higgs is sufficiently massive such that the two
W bosons are both on-shell. What is the largest possible value for
the positron–muon invariant mass  in terms of
the Higgs mass mH and the W boson mass mW ? Assume that all
leptons are massless.

Hint: It’s simplest to work in the rest frame of the Higgs
boson, and you can align the momentum of the W bosons along
the ẑ-axis.



(b) What is the minimum possible value of the positron–muon
invariant mass 

(c) What is the largest possible value of missing transverse
momentum from the neutrinos? You can again assume that the
Higgs boson is at rest, but you can’t, in general, assume that the
W bosons’ momenta lie along the ẑ-axis. Express the missing
transverse momentum in terms of the Higgs and W boson
masses, mH and mW.

Hint: Recall that the missing transverse momentum is the
magnitude of the sum of the transverse momenta of the two
neutrinos in the final state.

13.4 H → γγ Rate. In this exercise, we will estimate the decay rate for H →
γγ.

(a) Using the approximation that mH ≪ mt and naïve dimensional
analysis, estimate the Feynman diagram that represents the
matrix element M(H → γγ) presented in Section 13.2.3.

(b) Using this result, estimate the rate of Higgs decay to photons, 

Hint: You’ll need Fermi’s Golden Rule for decays, which we
worked out for muon decays in Section 10.4.1.

(c) The dominant decay of the Higgs boson is through bottom
quarks: H → bb. As it is a fermion, the coupling of the bottom
quark to the Higgs boson is controlled by its Yukawa coupling,
yb. With the mass of the bottom quark mb = 4.18 GeV, determine
the value of the Yukawa coupling yb.

(d) Estimate the matrix element for Higgs decay to bottom quarks,
M(H → bb). You can safely assume that mb ≪ mH in evaluating

the spinor product in the matrix element. How much larger is the
decay rate of the Higgs to bottom quarks than to photons?

13.5 Higgs Production Rate. In Eq. 13.74, we put together the Higgs
production cross section for gluon–gluon fusion. We stopped a bit
short there, and in this exercise, we’ll simplify the cross section



further. For simplicity, we reprint that expression here:

(13.87)

(a) Use the δ-function to integrate over the x2 gluon momentum
fraction. Don’t forget about the Jacobian factor.

(b) Now, in the remaining integral over gluon momentum fraction
x1, change variables from x1 to the rapidity y of the Higgs boson.
Recall that the rapidity is defined as

(13.88)

(c) At the 13 TeV LHC, what is the largest possible value of the
Higgs boson’s rapidity, y?

(d) In Fig. 13.7, we show the measurement of the Higgs boson
rapidity distribution as measured at the ATLAS detector.
ATLAS determined this distribution from combining results
from the H → γγ and H → four leptons decay channels. From the
expression you derived in part (b), can you describe a procedure
for determining the gluon parton distribution function fg (x) from
these data?



Fig. 13.7 Plot of the absolute value of the rapidity of the Higgs boson in 13 TeV proton
collisions measured at the ATLAS experiment. The combined result from H → γγ and H →
four leptons decays is shown by the black dots. From M. Aaboud et al. [ATLAS
Collaboration], “Combined measurement of differential and total cross sections in the H → γγ
and the H → ZZ∗ → 4ℓ decay channels at  TeV with the ATLAS detector,” Phys.
Lett. B 786, (2018), doi:10.1016/j.physletb.2018.09.019.

13.6 Landau–Yang Theorem. In this exercise, we will work through a proof
of the Landau– Yang theorem, which states that a massive, spin-1
particle cannot decay to two massless, identical spin-1 particles. To
do this proof, we’ll refer to the massive, spin-1 particle as H, and will
take massless particles to be photons γ, which we denote as 1 and 2.
As spin-1 particles, they all have polarization three-vectors  and 

 We will attempt to calculate the matrix element for the decay M(H

→ γγ) and find that it must be 0.

(a) Go to the frame in which H is at rest, so its three-momentum
vector is  Trivially, we then have that  For the



two photons’ momenta,  and  argue that

(13.89)

(b) Using this result and that photons are identical bosons, argue that
the matrix element must be of the form

(13.90)

for some constant, three-index object κijk and H mass mH.
Hint: Why is the factor of mH there? Why is there no

dependence on any of the momentum vectors?
(c) Now, perform a rotation on the polarization vectors. The matrix

element is Lorentz invariant, so it is necessarily rotationally
invariant. That is, for a matrix M ∈ SO(3) with matrix elements
Mij, the matrix element transforms as

(13.91)

Therefore,

(13.92)

That is, the object κ is also an invariant of rotations, just like the
identity matrix, I.

By contracting pairs of indices l, m, or n, argue that κijk is only
non-zero if i, j, and k are all different. Recall that M⊺ M = I.

(d) As an element of SO(3), the determinant of M is 1. Show that
the determinant can be written as

(13.93)

where ϵijk is the completely anti-symmetric symbol defined by



(13.94)

and ϵiik = 0. Use this to argue that κijk = κϵijk, for some constant κ.
Hint: What is ϵijk after a rotation?

(e) Then, the matrix element is

(13.95)

Argue that this implies that M(H → γγ) = 0, which proves the

Landau–Yang theorem.

13.7 Combining Uncorrelated Measurements. In Example 13.3, we
discussed how to combine and interpret the statistical significance of
uncorrelated measurements. In this exercise, we will apply this
technique to discover the Higgs boson. In Fig. 13.8, we show
ATLAS’s measurement of the four-lepton invariant mass in the search
for the Higgs boson. This plot, in addition to Fig. 13.3, was used as
evidence by ATLAS to claim discovery of the Higgs boson. From
these two plots, estimate the deviation in σ from the null hypothesis
that there is no Higgs boson. Assume Poisson statistics and that the
measurements are uncorrelated. Don’t worry about subtleties with the
look-elsewhere effect; just focus on the significant deviations around
a mass of 125 GeV. How does the estimated significance you find
compare to ATLAS’s official combination from Fig. 13.4?



Fig. 13.8 Plot of the invariant mass of four leptons in the search for the Higgs boson at the ATLAS
experiment. Reprinted from Phys. Lett. B 716, G. Aad et al. [ATLAS Collaboration], “Observation of a
new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,”
1 (2012), with permission from Elsevier.

These measurements are strictly not uncorrelated and the ATLAS
combination requires careful accounting for uncertainties in the
measurements, so this will only be a rough approximation.
Nevertheless, you should find a deviation that is reasonably close to
the 6σ from Fig. 13.4.

13.8 Testing the Spin-2 Higgs Boson Hypothesis. We argued on very
general grounds in Section 13.3.3 that the matrix element for the spin-
0 Higgs boson is independent of the scattering angle θ∗. The result of
this analysis was the matrix element in Eq. 13.84. In this exercise, we
will evaluate the matrix element for the hypothesized spin-2 Higgs
boson and demonstrate that there is explicit dependence on θ∗. We
will use the assumed form of the matrix element from Eq. 13.85.

The set-up of this scattering is the following. Working in the frame
in which the Higgs is at rest, we will take the momentum four-vectors
of the gluons and photons in this process to be



(13.96)

(a) For the matrix element M(g1L g2R → Hspin-2 → γ1L γ2R), write

down the polarization four-vectors of the gluons, ϵg1 and ϵg2.

(b) In this same process, with the momentum four-vectors identified
as above, calculate the polarization four-vectors for the photons,
ϵγ1 and ϵγ2.

Hint: To find these polarization vectors, can you just rotate the
polarization vectors for the gluons?

(c) Now, with the polarization vectors in hand, evaluate the dot
products that compose the matrix element:

(13.97)

For what value of θ∗ is this matrix element maximized? For what
angle θ∗ is it 0? Does that agree with our conclusions in Section
13.3.3?

13.9 Research Problem. Is the particle first observed on July 4, 2012 the
Higgs boson of the Standard Model? What measurements are required
for you be convinced either way?

1 In popular culture, for this reason the Higgs boson is sometimes referred to as the “God
particle,” which induces pain in physicists the world over. The unfortunate term can be traced to
Leon Lederman’s book with that as the title (L. Lederman and D. Teresi, The God Particle: If
the Universe is the Answer, What is the Question?, Houghton Mifflin (1993). 434 p.). In fact, in
the book, Lederman explains how it came to be:

This boson is so central to the state of physics today, so crucial to our final understanding of
the structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why
God Particle? Two reasons. One, the publisher wouldn’t let us call it the Goddamn Particle,
though that might be a more appropriate title, given its villainous nature and the expense it is
causing. And two, there is a connection, of sorts, to another book, a much older one...

Excerpt from THE GOD PARTICLE by Leon Lederman with Dick Teresi. Copyright © 1993
by Leon Lederman and Dick Teresi. Reprinted by permission of Houghton Mifflin Harcourt
Publishing Company. All rights reserved.

2 J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys.
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12 A quick argument for why this is true is the following. In a Lorentz-invariant quantum field
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Particle Physics at the Frontier

What next? The discovery of the Higgs boson is the culmination of the
Standard Model. We know the properties of the quarks, the leptons, and the
gauge bosons, and their interactions are constrained by requirements of
invariance under the various gauge symmetries of the Standard Model.
However, along the way, it seems like every discovery only raises more
questions. Why are the quark and lepton Yukawa couplings what they are?
Where does mass come from ultimately? Why are there three generations of
fermions? How is electroweak symmetry broken? Why are the gauge
couplings of the Standard Model the values that they are? Is this the final
story? Is there any deeper structure to Nature? It is these open questions that
motivate every particle physicist, and in this final chapter we’ll survey a few
of them. I hope that you can contribute to their solutions!



14.1 Neutrino Masses
The observation that different flavors of neutrinos oscillate into one another
means that some of the neutrinos must have distinct and non-zero masses.
This is not strictly allowed by the structure of the Standard Model, which
requires neutrinos to be exclusively left-handed fermions. With only left-
handed neutrinos in the game, it doesn’t seem possible to include a mass for
them in the Standard Model.

This isn’t to say that neutrino masses invalidate the Standard Model; at
typical energies, neutrinos can be thought of as massless, to extremely good
approximation. Adding a mass for neutrinos in the Standard Model is actually
not that hard, either. Let’s just consider the case with one neutrino, ν. Most
naïvely, we can just add a neutrino mass mν to the Lagrangian as

(14.1)

This requires the introduction of a right-handed neutrino, νR. Now, unlike all
other fermions of the Standard Model, neutrino masses can be completely
unrelated to the Higgs mechanism. One can posit a new source for neutrino
masses. Further, the weak interactions still only couple to left-handed
neutrinos, and this is the only way that we know how to create neutrinos. In
fact, the right-handed neutrino must be completely inert and not carry charge
under any of the Standard Model gauge groups. The right-handed neutrino is
therefore referred to as a sterile neutrino. If we included such a mass term in
the Standard Model, then the neutrino and anti-neutrino would be distinct
particles. Such a mass term is called a Dirac mass.

However, it is perfectly consistent with all symmetries to postulate that a
neutrino is its own anti-particle. A neutrino is electrically neutral, and so its
anti-particle is also electrically neutral. In the Standard Model, examples of
particles that are their own anti-particles are the photon and the Z boson. By
contrast, quarks and charged leptons cannot be their own anti-particles
because the electric charges of their anti-particles would be different. For
example, the electron and positron have electric charge −e and +e,
respectively. For neutrinos, there is no such restriction and one can write
down a mass for the neutrino as its own anti-particle. Such a mass term is



called a Majorana mass after Italian physicist Ettore Majorana.1 Majorana
disappeared at age 32 under exceptionally suspicious circumstances, traveling
by boat from Palermo to Naples in 1938.

If the neutrino is its own anti-particle, we say that it is a Majorana
fermion. The action of charge conjugation C turns a particle into its anti-
particle, and so a Majorana fermion is an eigenstate of charge conjugation.
Concretely, acting C on a left-handed spinor νL yields

(14.2)

where∗ denotes complex conjugation and ϵ is the anti-symmetric symbol,
which is represented in matrix form as

(14.3)

A left-handed Majorana spinor is one for which charge conjugation just
returns itself:

(14.4)

So, a Majorana fermion is just right- or left-handed, and not both. If the
neutrino is a Majorana fermion, its Lagrangian can be exclusively expressed
in terms of a left-handed neutrino νL. The mass term for such a neutrino is

(14.5)

Note that the relative signs between the two terms ensure that this mass is
Hermitian: the transpose-conjugate of ϵ is −ϵ. This mass is a bit weird, and
might seem like it is just identically 0. A Majorana mass is only non-zero if
the components of the spinor νL are themselves anti-commuting quantities,
called Grassmann numbers. We have seen the necessity of anti-commuting
quantities to describe spin 1/2 before, and this is connected to the relationship
between fermions and anti-symmetry under identical particle exchange
(called the spin-statistics theorem).

There are experiments currently running that are attempting to determine if



the neutrino is Dirac or Majorana type (or some admixture). The largest such
experiment, called EXO (Enriched Xenon Observatory) consists of a vat of
200 kg of enriched liquid136 Xe.2 An image of the EXO detector is presented
in Fig. 14.1. The vat is observed continuously for evidence of a double β-
decay of xenon to barium:

Fig. 14.1 The EXO detector (the cylinder to the right) as it enters the cryostat to the right. The detector
houses the liquid xenon and is approximately 70 liters in volume. From M. Auger et al., “The EXO-200
detector, part I: Detector design and construction,”J. Instrum. 7, P05010 (2012) [arXiv:1202.2192
[physics.ins-det]].

This decay has been observed and has a lifetime of about 1021 years.3 If the
neutrino is its own anti-particle, then it is possible for the neutrino and anti-
neutrino to annihilate one another, and so the final state would be



This decay is called “neutrinoless double β-decay,” and is a smoking-gun
signature of a Majorana fermion. The distinction between neutrinoless double
β-decay and standard β-decay is that the emitted electron and positron should
have equal and opposite momenta, as there are no final-state neutrinos. EXO
is looking for this but hasn’t found anything yet,4 setting a lower limit on the
half-life of this decay of about 1025 years. A follow-up experiment called
nEXO consisting of a 5 ton vat of liquid xenon is currently being proposed.5
Stay tuned...



14.2 Dark Matter
While the Standard Model seems to be a complete theory for three
fundamental forces and particle interactions, and has been and still is
rigorously verified, there is strong evidence that the 17 particles we identified
in Chapter 1 are only 20% of the matter of the universe. There does not seem
to be enough normal matter (that of the Standard Model) to explain observed
astrophysical phenomena. Perhaps the canonical example of evidence that
more matter is needed in the universe is the velocity distribution of stars
within galaxies. The velocity of a star orbiting a galaxy is dependent on the
amount of total mass within its orbital radius to the center of the galaxy. For a
circular orbit of radius R, Newton’s law of gravitation and Newton’s second
law imply that the orbital velocity v of the star is

(14.6)

where Mtot is the total mass within the orbital radius. The mass within the
orbital radius can be determined by counting luminous stars, and stars
dominantly exist near the center of galaxies. Therefore, at large orbital radii,
the mass within the orbital radius is independent of the radius. Therefore, we
would predict that v ∝ R−1/2. However, it has been found that this
relationship of the orbital velocity is nearly constant at large orbital radii,6
suggesting that there is extra mass responsible for maintaining star velocities
far from the center of the galaxy.

This necessary extra mass is not visible and does not seem to interact
electromagnetically, so it is referred to as dark matter. Extensive evidence
for dark matter now exists, from many galactic rotation curves, to the
distribution of mass after galactic collisions,7 to detailed measurements of the
cosmic microwave background.8 As of this writing, all of the evidence for
dark matter is exclusively through its gravitational interactions and
astrophysical observations. As such, all that is conclusively known regarding
dark matter is that it interacts gravitationally; that is, it has a non-zero energy
density.

Many experiments have collected data, are currently running, or are



proposed to search for a particle origin of dark matter. Throughout this book,
we have seen a few such experiments, for example the LUX experiment in
the exercises in Chapters 2 and 4. LUX, in particular, is sensitive to a
possible type of dark matter called a WIMP, or weakly interacting massive
particle. “Weakly interacting” in this case refers to its features of coupling
with low strength with other particles and of interacting through the weak
force. Another possible candidate as the particle of dark matter is the axion,
which we introduced as a solution to the strong CP problem within QCD in
the Historical Profile in Box 12.1.
There are terrestrial experiments searching for the axion, as well as
astrophysical searches, but no conclusive evidence has been identified yet.
Several other possibilities for dark matter have been proposed, from micro-
black holes to modifications of Newtonian gravity at extragalactic distances.
As mentioned earlier, the only evidence that we have for dark matter is
through gravity, so we do not even know if dark matter interacts through the
forces of the Standard Model at all. Searching for the particle nature of dark
matter is one of the greatest outstanding problems in particle physics and will
remain a major research direction in the future.



14.3 Higgs Self-Coupling
In our understanding of the Standard Model, we set up the potential of the
Higgs boson so that the origin, where  is an unstable equilibrium point.
The Higgs then “rolls” down the potential and settles in the minimum.
Because  this spontaneously breaks the electroweak gauge
symmetry, giving masses to the W and Z bosons. We argued that this unified
electroweak theory had a lot of constraints. What was not constrained,
however, was the precise shape of the Higgs potential. Can we nail down this
mysterious piece of the Standard Model?

Let’s remind ourselves what the scalar potential of the Higgs boson was in
the Standard Model. The potential is

(14.7)

where λ is the quartic coupling of the Higgs and v is the vev. Expanding
about v as

(14.8)

the spontaneously broken potential is

(14.9)

The mass of the Higgs boson is  and so the quartic coupling is

(14.10)

To evaluate λ, the mass of the Higgs boson is mH = 125 GeV and the value of
the vev is v = 246 GeV.

Currently, as discussed in Chapter 13, all we know about the Higgs boson
is its mass, spin, and (some of) its decay modes. This is not enough



information to determine the shape of the potential, and therefore the
mechanism for the breaking of electroweak symmetry. Effectively, we have
Taylor expanded the Higgs potential  about its minimum, where the
Higgs field H is the expansion parameter. By measuring the mass of the
Higgs boson, we have measured the curvature of the potential’s minimum.
High curvature or small radius of curvature means a large mass, while low
curvature or large radius of curvature means small mass. Compare this to
energy levels of states in a potential as determined by the Schrödinger
equation. As a second-order differential equation, the Schrödinger equation
sets energy eigenvalues proportional to the curvature of a potential. To
measure the full Higgs potential, however, means determining the cubic and
quartic terms in the Taylor expansion in H.

These higher-order terms in the potential correspond to Higgs boson self-
interaction terms. The cubic term, λvH3, describes the interaction of three
Higgs bosons. Just measuring the mass is not sufficient to determine the
coefficient of the cubic term; one needs to consider a process in which three
Higgs bosons interact. Perhaps the simplest process to study the cubic Higgs
interaction at the LHC is the production of two Higgs bosons in the final
state: pp → HH. One contribution to the cross section for this process is from
a diagram that is proportional to the coupling λ directly:

Similarly, the production of the three Higgs bosons in the final state has a
contribution that is also sensitive to λ directly. Therefore, the measurement of
the cross section for multi-Higgs production is sensitive to the shape of the
potential.

Multi-Higgs production has not yet been observed at the LHC,9 and it is
likely that it will only be measured at a future, yet-to-be-constructed facility.
Nevertheless, this will be a hugely exciting test for the Standard Model.
Additionally, when and/or if observed, it will be the first direct measurement



of a fundamental particle’s self-interaction.
Another interesting question is how the potential got to be formed in the

first place. The standard picture is that in the early universe, when it was very
hot and dense, the vev of the Higgs was  As the temperature
cooled, there was a phase transition (like water into ice) that modified the
potential and gave the Higgs a non-zero vev:  The exact
dynamics of this phase transition depends on properties of the early universe.
So, if we are able to measure Higgs self-interactions, this could provide
information about what was happening right after the Big Bang! Cool!



14.4 End of Feynman Diagrams?
Throughout this book, we have used Feynman diagrams as the language in
which we expressed processes in particle physics. Feynman diagrams have a
nice physical picture and a precise mathematical formulation, and are
systematically improvable as a perturbation theory. That is, we can calculate
more complicated Feynman diagrams in a systematic way to obtain a better
and more precise answer for a particular cross section. Behind this beautiful
façade lies an ugly truth: the perturbation theory of Feynman diagrams does
not converge. In fact, the radius of convergence of Feynman diagram
perturbation theory is precisely zero. This would seem to suggest that
Feynman diagrams are totally useless, which doesn’t jibe with our experience
of comparing their results to data. So what’s going on?

14.4.1 Failure of Convergence of Feynman Diagrams
The claim that Feynman diagram perturbation theory doesn’t converge and
has zero radius of convergence is a big one, but easy to prove. The
importance of Feynman diagrams contributing to a particular process is
ordered by the number of loops they have. Each loop in a Feynman diagram
adds another factor of the coupling constant, like α in QED or αs in QCD. To
see this, compare the tree-level diagram to a one-loop diagram for the process
e+ e− → μ+ μ−:

(14.11)



Each vertex with two fermions and a photon is proportional to the electric
charge e, and 4πα = e2. Therefore, the one-loop diagram is formally
suppressed with respect to the tree-level diagram by a factor of α ≃ 1/137. A
two-loop diagram would be suppressed by α2, and a diagram with ℓ loops
would be suppressed by a factor of αℓ. Therefore, Feynman diagram
perturbation theory for the process e+ e− → μ+ μ− is an expansion in the fine
structure constant about α = 0.
We can use the ratio test to determine the radius of convergence of this series
expansion. Let’s express the matrix element for e+ e− → μ+ μ− scattering as a
series in α:

(14.12)

where M(0) (e+ e− → μ+ μ−) is the tree-level diagram, cℓ are some constant

coefficients, and ℓ counts the numbers of loops. Note that c0 = 1. Then, the
ratio test tells us that the radius of convergence R in α of this series is

(14.13)

The claim that the radius of convergence R = 0 for Feynman diagrams
implies that coefficients cℓ get larger as ℓ increases. This is really weird and



very unfamiliar from studying series like the exponential function, for
example.

The argument for zero radius of convergence for Feynman diagrams is due
to Freeman Dyson.10 A simplified version of the argument goes as follows.
For α > 0, it costs energy for a photon to split into an electron–positron pair.
However, if α < 0 (that is, electric charge e is imaginary), then the system can
lose energy by photons splitting to electron– positron pairs. So, the system
can shed electron–positron pairs and keep losing energy. This can in principle
continue ad infinitum and so the system with α < 0 does not have a lower
bound on the ground state energy. If Feynman diagrams are an expansion
about α = 0, and for any α < 0 there is no ground state, then the radius of
convergence of the Feynman diagram perturbation theory is 0. This means
that, as you calculate more and more Feynman diagrams with more and more
loops, the result you find does not converge. Such a series with a zero radius
of convergence is called an asymptotic series.

This might suggest that Feynman diagrams are exceptionally useless. If
there is no hope of convergence of the perturbation theory, then what do we
do? It turns out that asymptotic series are actually exceptionally useful, often
more useful than convergent series. Asymptotic series have some super crazy
properties. For many asymptotic series, the result you get after a finite order
in the perturbation theory is arbitrarily close to the exact result. This is not
what happens with convergent series. Additionally, the precise way that
asymptotic series diverge as you include more terms contains a huge amount
of information for properties of the exact result. There is an effort in the
theoretical physics community to understand the behavior of asymptotic
series in quantum field theory, a program called resurgence.11

Why, then, do Feynman diagrams seem to give such a good description of
processes in particle physics? It is because only calculating low orders of the
expansion effectively exhibits convergence properties. To see this feature,
let’s model the Feynman diagram expansion as perhaps the simplest
asymptotic series:

(14.14)

It’s easy to show with the ratio test that this has 0 radius of convergence.
Let’s now go back to the ratio test, but let’s not take the limit ℓ → ∞. The



ratio Lℓ between terms at order ℓ + 1 and ℓ is then

(14.15)

The ratio test says that if, as ℓ → ∞, this is less than 1, then the series
converges. But we can also interpret it differently. We know the value of α ≃
1/137 and so we can determine the order ℓ at which the series starts to
diverge. Demanding that (ℓ + 1)α < 1, the order ℓ up to which it appears that
the Feynman diagram series converges is then

(14.16)

So, one needs to calculate diagrams with over 100 loops to start seeing
divergence! Some modern calculations in QED now include up to five loops,
so we are a very, very long way from being sensitive to the asymptotic nature
of the Feynman diagram expansion.

Example 14.1 A powerful technique for making sense of asymptotic series is
the method of Borel summation. What is the Borel sum of the series

(14.17)

Solution

To Borel sum, we first multiply and divide each term in the series by the
factorial:

(14.18)

In the second equation, we have used the fact that the integral evaluates to ℓ!.
Now, we exchange the sum and integral. This is not typically mathematically
allowed, but we can just define the Borel sum by this procedure. Exchanging
the sum and integral, we then find



(14.19)

where we have used the geometric series

(14.20)

Remarkably, the integral that remains is finite for α ≤ 0! When the Borel sum
converges, it can be used to define the value of a divergent series.

14.4.2 More Efficient Calculational Techniques
In addition to corresponding to the expansion of an asymptotic series,
Feynman diagrams also are less than optimal for efficiency of calculation. As
we have discussed in this book, Feynman diagrams encode momentum,
energy, angular momentum, and charge conservation at every vertex, and
interactions are mediated by force-carrier bosons. Because of these
properties, Feynman diagrams have a beautiful physical interpretation, but
this can also come with a huge amount of baggage. To illustrate this, let’s
consider the calculation of the tree-level diagram for five-gluon scattering.
We label the gluons 1, 2, 3, 4, 5, where each has a definite helicity. The
Feynman diagram calculation of this process includes diagrams like

(14.21)

However, to calculate the corresponding matrix element requires calculating
25 Feynman diagrams with a total of 3600 terms. This requires a computer to



evaluate.
If, after evaluating the Feynman diagrams and summing them, you are able

to simplify the result, the final answer is exceedingly compact. If gluons 1
and 2 have left-handed helicity and 3, 4, and 5 have right-handed helicity,
one finds that the matrix element is

(14.22)

This ridiculously simple result was first found by Stephen Parke and Tomasz
Taylor in 1986.12 Here, 〈ij〉 represents the spinor-helicity notation, and is just
a shorthand for the spinor product

(14.23)

Why are there so many Feynman diagrams and what are Feynman diagrams
hiding to make them so complicated?

The answer is related to gauge invariance. Though Feynman diagrams
manifest momentum conservation, individual Feynman diagrams are not
themselves gauge invariant, in general. Only after summing over all possible
Feynman diagrams do you find that the result is gauge invariant. We have
argued that gauge invariance is a powerful tool for constructing Lagrangians.
We just had to posit the existence of a symmetry under complex linear
combinations of three “colors,” and QCD was the unique result. However,
gauge invariance has no direct physical consequence. Unlike a true symmetry
which transforms physical states (like a physical rotation), a gauge symmetry
leaves physical states unchanged. We can never “see” a gauge symmetry in
the laboratory. It seems like clinging to gauge invariance as a guiding
principle is responsible for the complexity of Feynman diagrams.

Can we then develop a new technique for calculating scattering amplitudes
that doesn’t reference gauge invariance at all? Let’s determine what pieces of
information we would need. The scattering amplitude encodes the helicity
information of external particles. Written in spinor helicity notation, it is easy
to identify the helicity of particles; all we have to do is count the effective
number of right- or left-handed spinors. For example, in Eq. 14.22, consider
gluon 1. Gluon 1 appears in the numerator four times and in the denominator
two times. From the numerator, there are four left-handed spinors (recall that



u†
R is left-handed), which corresponds to a total left-handed spin of 2 (= 4 ×

1/2). The denominator therefore has a total left-handed spin of 1, and so the
net spin of gluon 1 is just one unit, left-handed. The spins of all gluons are
similarly accounted for. One has an additional constraint on the matrix
element because the mass dimension is also known.

The most powerful constraints on the matrix element come from imposing
unitarity, though in a way with which you may not be familiar. A propagator
that goes on-shell corresponds to the existence of a real particle. Real
particles live “forever” (because the uncertainty on their energy is 0), so
whenever a propagator goes on-shell the amplitude must decompose into the
product of simpler amplitudes. In gluon scattering, there are two physical
configurations in which propagators go on-shell: either two gluons become
collinear or one gluon has much lower energy than all the others. To see this
concretely, let’s take the amplitude from Eq. 14.22 in the limit where gluon 3
has a much lower energy than the other gluons. In that case, the amplitude
simplifies:

(14.24)

The four-point amplitude is

(14.25)

and the factor that is singular as p3 → 0 is called the soft amplitude. The
general feature of the amplitude breaking up into simpler pieces when a
propagator goes on-shell is called factorization, and it provides extremely
strong constraints on the functional form of the amplitude.

For the past 20 years or so, there has been a large effort in the theoretical
community to develop new methods for calculation that are much more
efficient than Feynman diagrams. This includes using techniques like
factorization and helicity management as discussed above, but many other
properties of the amplitude as well. This effort goes by the name of S-matrix
or amplitudes program.13 Importantly, gauge invariance is nowhere to be
seen in the amplitudes program. With this approach, deep connections
between Feynman diagrams, function theory, the structure of transcendental



numbers, algebraic geometry, and other fascinating mathematics have been
established. There’s still a long way to go before Feynman diagrams are
totally outmoded, but this seems to be an extremely promising approach.



14.5 The Future of Collider Physics
After a few minor hiccoughs, the Large Hadron Collider has been collecting
proton collision data since 2009, and is planning to continue taking data well
into the 2030s. Its performance has exceeded expectations and even exceeded
design specifications in some ways, so a long and successful run is
anticipated. Nevertheless, it is not too early to think about the next collider
physics experiment, especially because the LHC (or any proton collider more
generally) is not necessarily the right tool for some questions in particle
physics. We end this chapter with a discussion of a few of the collider
experiment projects that are being considered, following the LHC.

14.5.1 International Linear Collider (ILC)
With the discovery of the Higgs boson, we want to learn as much about it as
possible. The LHC has already taught and will continue to teach us a
significant amount: we know the mass of the Higgs boson, have observed
some of its decays, and have strong evidence for its spin. The proton collision
environment of the LHC is not ideal, however, for detailed and dedicated
studies of the Higgs boson. The parton collision center-of-mass energy is not
known, and so the collision frame is unknown. At the very least, this makes
searches for the Higgs boson challenging, and at worst, it means that a huge
number of Higgs bosons that are produced are never identified as such.

An electron–positron collider is therefore ideal to precisely produce and
identify Higgs bosons, as the collision energy is directly controllable and
final states are very clean. One such electron–positron collider that has been
in the works for about 20 years is the International Linear Collider, or ILC.14

The ILC is proposed to collide electrons and positrons at energies up to 500
GeV (and potentially up to 1 TeV), which would more than double the
collision energy achieved at LEP. The 500 GeV benchmark enables study of
a number of processes that involve the Higgs boson:

e+ e− → ZH. The threshold for this process is about 215 GeV and this is
the dominant production process of the Higgs boson at an electron–
positron collider. This process enables a measurement of the total decay



width of the Higgs boson because you can isolate this process by
identification of the Z boson and total momentum conservation.
e+ e− → HH. The threshold for this process is about 250 GeV. Because
multiple Higgs bosons are produced in the final state, this is sensitive to
the self-coupling of the Higgs boson, and therefore to the Higgs
potential parameter λ.
e+ e− → ttH. The threshold for this process is about 475 GeV, and this is
the most sensitive way to directly determine the top quark’s Yukawa
coupling; i.e., its coupling to the Higgs boson.

The ILC would be hosted in Japan, and likely constructed in northern
Honshu within the next decade. There is international support for the ILC and
scientists in the United States, in particular, emphasize participation in the
ILC as imperative for a strong future in particle physics. The Japanese are
very excited about this project as well; high schools have made promotional
videos to support the building of the machine in or near their town. Even
Hello Kitty has endorsed the science of the ILC!

14.5.2 Circular Electron Positron Collider (CEPC)
In addition to the relatively near-term schedule of the ILC, there are a couple
of collider physics projects being planned now that may come online in the
mid-twenty-first century. One is an electron–positron collider proposed by
scientists in China, called the Circular Electron Positron Collider, or CEPC.15

The CEPC, as the name suggests, would be a circular collider, like LEP.
However, the collision energies would be much higher, starting at about 250
GeV and possibly extending higher. Because of the higher energies, the
CEPC accelerator ring would be much larger than LEP or LHC, with a
circumference of about 80 km. The CEPC is thus a complementary collider to
the ILC that can shine more light on properties of the Higgs boson.

Locations for the CEPC within China are being determined now, with the
most likely location being Qinhuangdao city, situated east of Beijing on the
Bohai Sea. There is a lot of support from the local government to host the
CEPC, and that area of China is a popular tourist destination because it is
near the eastern end of the Great Wall. The CEPC is just the first step in
China’s collider proposal. Much like LEP and LHC, the CEPC site would be
repurposed for a proton collider at the end of its data taking. The proposed



proton collider, called the Super Proton–Proton Collider, or SPPC, would
collide protons at energies exceeding 50 TeV, many times the LHC’s energy.
The China collider proposal is moving forward very rapidly, and with an
extended program consisting of both an electron– positron and a proton
collider, China could be the center of particle physics later this century.

14.5.3 Future Circular Collider (FCC)
After LHC, CERN is also looking to continue particle collision experiments
into the foreseeable future. The CERN proposal, called the Future Circular
Collider, or FCC, would include a proton collider achieving collision
energies of up to 100 TeV.16 The FCC would be located in the Geneva area; a
schematic map of the proposed FCC accelerator ring is presented in Fig. 14.2.
To achieve these exceedingly high collision energies, the circumference of
the FCC would be 100 km, with 16 T bending magnets. The LHC itself
would be used as a pre-accelerator ring that would inject protons into the 100
km ring.



Fig. 14.2 Schematic aerial view of the proposed FCC accelerator ring in the area near Geneva. The
LHC ring is also shown for scale. Credit: CERN © CERN.

The physics program of the FCC would be exceptionally broad. The Higgs
boson is of course central, and the very high energies enable observations of
multiple Higgs boson production, which would provide direct sensitivity to
the Higgs potential. Correspondingly, a determination of the Higgs potential
informs the process by which electroweak symmetry is broken. At such high
energies, neutrino interactions with other particles start becoming non-
negligible. There is a significant probability that a neutrino with multi-TeV
energy can radiate Z bosons, just like an electron can radiate photons, which
will enable neutrinos to be “seen” by the detectors. Jets produced at the FCC
will have a dynamic range that can extend over four decades in energy,
enabling a more detailed probe of their properties than ever before. The FCC
will also enable a detailed study of the energy dependence of the running
gauge couplings of the Standard Model. While this energy dependence is
determined in the Standard Model, deviations from the Standard Model
prediction would be a clear indication of an energy scale for new physics.

These proposed experiments, the ILC, the CEPC and SPPC, and the FCC,
will be at the next frontier of probing the universe at ever-decreasing
distances, in order to understand a bit more about how we got here.

Example 14.2 The Superconducting Super Collider (SSC) was a proposed
proton–proton collider that was to be built in Waxahachie, Texas, in the
1990s. It would have accelerated protons to 20 TeV in an 87 km ring and
therefore would have probed energies several times that of the LHC about a
decade before the LHC. The SSC project was terminated in 1993, however,
after public and political support dwindled.

How strong were the SSC’s bending magnets supposed to be, and how do
they compare to the LHC and the proposed FCC magnets?

Solution

To keep charged particles moving in a circle, the strength of the magnetic
field B is, from Chapter 5,

(14.26)



where v is the particle’s velocity, E is the particle energy, e is the
fundamental charge, and R is the radius of the circle. To extremely good
approximation, we can set v = c and the SSC’s radius is

(14.27)

An energy of 20 TeV corresponds to an energy in joules of

(14.28)

The strength of the SSC’s bending magnets is therefore

(14.29)

The magnets at the LHC have a maximum strength of 8.3 T, so are a bit
stronger than those for the SSC. By contrast, the FCC would accelerate
would protons to 50 TeV energy and have a radius of 100 km, so the strength
of the bending magnets would need to be

(14.30)



Exercises
14.1 Neutrinoless Double-β Decay at EXO. How many136 Xe atoms are

there in the EXO-200 vat? How long does it need to be watched to
observe just one neutrinoless double β-decay if the half-life is 1025

years?
14.2 Double-Higgs Production. In Section 14.3, we discussed the process

pp → HH, which is sensitive to the Higgs self coupling, λ. Using the
NDA method developed in Example 13.2, estimate the matrix element
M(gg → HH) represented by the Feynman diagram in Section 14.3.

Unlike the application of NDA to the matrix element M(gg → H),

the momentum flowing through the loop of top quarks is now about
2mH, and it’s not true that 2mH < mt. Nevertheless, to get the mass
dimension of the diagram correct you can still assume that mH ≪ mt.

Hint: A 2 → 2 matrix element is dimensionless.
14.3 Borel Summation of a Convergent Series. Borel summation is a

powerful technique for taming divergent series. In this exercise, we
will see how it reproduces the correct result when the series
converges.

Perform the Borel summation technique for the convergent series

(14.31)

for |x| < 1. Do you find the same function of x for the Borel-summed
result? For what values of x does the Borel sum converge?

14.4 The International Linear Collider. The ILC is a linear collider, in
contrast to LEP, for example, which was a circular electron–positron
collider. What are some advantages of a linear electron–positron
collider over a circular collider? Can you think of some
disadvantages?

14.5 The Largest Possible Collider. The FCC pushes the limits of how
large we think a particle physics experiment can be. However, the



largest possible terrestrial circular collider would completely circle
the Earth. While this is a bit silly, it is a good benchmark to keep in
mind when asking what particle physics questions a collider can
answer. In this exercise, we will estimate the maximum collision
energy of such a collider. Assume that the number of protons in a
bunch in the collider is the same as at the LHC and that the bunches
are collided every 25 nanoseconds.

(a) What is the highest possible energy to which this collider could
accelerate protons? You’ll need the expression for the power
emitted by synchrotron radiation from Chapter 5. Assume that
the synchrotron losses are the same as at the LHC. The radius of
the Earth is approximately 6000 km.

(b) Do the same exercise, but now assume that all of the power
generated on Earth is used to counter losses from synchrotron
radiation. The power consumption of humans on Earth is
approximately 1013 W.

(c) Getting really silly, what is the highest possible energy of
protons in a circular collider that extended along Earth’s orbit
around the Sun? Use all of Earth’s resources as before and the
radius of Earth’s orbit, approximately 150 million km.

14.6 Research Question. Why is there something rather than nothing?
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Appendix A

Useful Identities

A.1 Complex Numbers
The imaginary number, i, is the square-root of −1:

(A.1)

A general complex number z is a linear combination of a real number and a
purely imaginary number and can be expressed as

(A.2)

for two real numbers a, b ∈ R. a is referred to as the real part of z and b is
referred to as the imaginary part of z. The complex conjugate of a complex
number z is identical, except that all imaginary numbers i are negated. The
complex conjugate of z is denoted in various contexts by z∗, z, or sometimes
z† and is

(A.3)

Real numbers and purely imaginary numbers are distinct and so can be
naturally thought of as orthogonal to one another. As such, the magnitude or
length of a complex number follows from the Pythagorean theorem in two
dimensions, corresponding to its real and imaginary parts. For the complex
number z, its magnitude is denoted by |z| and is

(A.4)

Note that the sum of the squares of the real and imaginary parts of the
complex number z is also equal to the product of itself times its complex



conjugate:

(A.5)

An equivalent representation of a complex number is through its
magnitude and phase angle. The real and imaginary parts of a complex
number can be defined as the projections along the real and imaginary axes,
respectively. We can define

(A.6)

for a phase angle ϕ ∈ [0, 2π). Then, the complex number z is

(A.7)

The rightmost equality is known as Euler’s formula.



A.2 δ-Function
The Dirac δ-function δ(x) is properly a distribution or generalized function
whose value is 0 if its argument x is non-zero and infinite if x = 0. Though
infinite, the δ-function is still integrable:

(A.8)

for any ϵ > 0. When integrated against any function f(x), the δ-function just
fixes the argument of the function to be 0:

(A.9)

The argument of the δ-function can be displaced by some constant a. Then,
its integral on the domain x ∈ [0, 1] is

(A.10)

Here, Θ(x) is the Heaviside Θ-function, which is 1 if its argument x is greater
than 0, and 0 if x < 0. That is, the way to read Eq. A.10 is that the integral
over the δ-function δ(x − a) is only 1 if a > 0 and a < 1. Otherwise, the δ-
function is zero over the whole integration domain, and so the integral is 0.

If the δ-function has a non-linear argument, then a change of variables
must be performed before the integral can be done. Consider the function f(x)
and the integral over the δ-function whose argument is f(x):

(A.11)

where y is some number. Changing variables to t = f(x), the integral becomes

(A.12)



The inverse derivative is just the Jacobian of the change of variables. In this
form, one can then integrate the δ-function.



A.3 Fourier Transforms
The Fourier transform of a function of one argument f(x) is defined to be

(A.13)

where p is a real number. We say that x and p are Fourier conjugate variables
to one another, and the Fourier transform can be inverted as

(A.14)

For the Fourier transform and the inverse Fourier transform to be consistent,
we require that the Fourier transform of the function f(x) = 1 is the δ-function:

(A.15)

That is,

(A.16)

In multiple dimensions, the Fourier transform generalizes naturally.
Consider the n-dimensional vector  and a function  of this vector. Its
Fourier transform is

(A.17)

where  is an n-dimensional vector of real numbers. The integral extends
over all possible values of each component of the vector  The inverse
Fourier transform in multiple dimensions is correspondingly



(A.18)

For a function f(x) of the spacetime four-vector x, its Fourier transform is

(A.19)

where p is the momentum four-vector. The inverse Fourier transform is then

(A.20)



A.4 Spin-0
The Klein–Gordon equation that describes a massive, free, spin-0 field ϕ(x) is

(A.21)

where m is the mass of the field. A general solution to the Klein–Gordon
equation can be expressed as

(A.22)

where p is the momentum four-vector that is on-shell:  is the
Fourier-transformed field of ϕ(x) that exclusively depends on momentum p.



A.5 Spin-1/2
The Dirac equation that describes a massive, spin-1/2 field ϕ(x) is

(A.23)

In this book, we typically just considered massless solutions to the Dirac
equation. In the massless case, the Dirac equation separates into two
equations for two-component spinors ψR (x) and ψL (x), called the Weyl
equations:

(A.24)

σμ and σμ are four-component objects of the Pauli spin matrices:

(A.25)

I is the 2 × 2 identity matrix, and the σ matrices are

(A.26)

The positive-energy solutions to the Weyl equations, p0 > 0, describe
particles and can be expressed as

(A.27)

(A.28)

In these expressions, the momentum four-vector is expressed in spherical



coordinates as

(A.29)

where θ and ϕ are the polar and azimuthal angles, respectively. The negative-
energy solutions, p0 < 0, describe anti-particles and can be expressed as

(A.30)

(A.31)



A.6 Spin-1
The equations of motion for a source-free, massless, spin-1 field Aμ (x), such
as a photon, is

(A.32)

These equations enjoy a gauge invariance in which the field can transform
inhomogeneously without affecting the equations of motion. Under a
transformation of

(A.33)

where λ(x) is any scalar function of the spacetime coordinates x, the equations
of motion are unchanged. In this book, we introduced the Lorenz gauge in
which we enforce

(A.34)

In Lorenz gauge, the equations of motion are

(A.35)

which is just the Klein–Gordon equation.
The solution to the spin-1 field equations of motion is

(A.36)

for massless, on-shell momentum p, where p2 = 0. ϵ(p) is called the
polarization vector of the field and satisfies

(A.37)

There are two physical polarization states which can naturally be expressed
as right-handed and left-handed polarization. For momentum aligned along
the ẑ-axis,



(A.38)

where E is the energy, the right- and left-handed polarization vectors are

(A.39)



Appendix B

Review of Quantum Mechanics

In this appendix, we present a review of quantum mechanics from a
perspective that complements the approach to particle physics exhibited in
this book. Nothing in this appendix is necessarily required for understanding
the results in the body of the textbook, but it will hopefully provide some
insight, if you only have a minimal introduction to the subject. We start from
some fundamental axioms, and from there derive, among many other things,
the Schrödinger equation. The two axioms that we will take are
Axiom 1: The wavefunction ψ(x, t) is a complex probability amplitude for

the quantum system to be at point x at time t.
Axiom 2: The total probability is unity and it does not change with time:

(B.1)

for all t.



B.1 Unitary Operators
Starting from these axioms, what can we do? One thing we can do is perform
a transformation of ψ(x, t) in a way that preserves probability. We implement
a transformation by an operator Û whose goal in life is to manipulate ψ(x, t).
That is, we consider transforming ψ(x, t) as

(B.2)

What are the properties of Û? Performing this transformation within the
calculation of the probability, we have

(B.3)

Here, Û† is the complex conjugate operator of U; formally, this is the
Hermitian conjugate, in which we complex conjugate and transpose (when
thought of as a matrix). We do the transpose because Û acts to the right,
while Û† acts to the left.

To ensure that probability is conserved, we must enforce that

(B.4)

If the Û operator were a matrix, this would be the condition on unitary
matrices. We then say that Û is a unitary operator (i.e., it preserves unit
probability). This result is known as Wigner’s theorem.1 Actually, Wigner’s
theorem also allows for the possibility that Û is anti-unitary. An anti-unitary
operator still satisfies Eq. B.4, but additionally complex conjugates the
wavefunction:

(B.5)

This clearly also preserves probability, but is related to time reversal, so we
won’t study it further here.



With that assumption Û is unitary, can we leverage that property to express
it in a nice way? Indeed we can. Note that if Û were just a complex number,
we could write Û as

(B.6)

for some real number ϕ. Then, Û† Û = eiϕ e−iϕ = 1, which is the condition of
unitarity. With this motivation, let’s then express Û as

(B.7)

for some other operator T̂. If these were matrices, e−iˆT looks scary; however,
it’s just shorthand for the Taylor series:

(B.8)

What properties does T̂ have? From the unitarity constraint, we have

(B.9)

This multiplication, found by just adding exponents, can be justified with the
Taylor series. Then, for this to hold true, we must enforce

(B.10)

or that T̂ is a Hermitian operator. Hermitian operators or matrices are the
generalization of real numbers, as their eigenvalues are strictly real. We say
that Hermitian operators “generate” unitary transformations of the
wavefunction. The verb “generate” will make more sense shortly.

This has been quite abstract; let’s bring it back to reality and explicitly
construct a unitary operator. Let’s consider the transformation that translates
the wavefunction to the right by Δx:

(B.11)

Note the minus sign for moving right; that is, if I move left, then it looks like



the wavefunction has moved right. Note that this transformation indeed
preserves probability:

(B.12)

This is true because we can make the change of variables y = x − Δx in the
integral.

So what is Û? Now we see the power of expressing Û as an exponential.
We have

(B.13)

To continue, let’s Taylor expand both sides to linear order. This then yields

(B.14)

We then immediately find that

(B.15)

It then follows that

(B.16)

which is a pretty crazy operator! However, let’s see what it does to ψ(x, t):

(B.17)

This is just the Taylor expansion of the wavefunction about the point x.
Let’s study this Hermitian operator in some more detail. Let’s suggestively

write



(B.18)

where

(B.19)

and ħ is some constant. So far, this is a tautology. However, we can
determine what this operator p̂ is and give it a name. As shown above, the
derivative operator displaces the wavefunction from an initial position x.
Let’s imagine that we have a collection of point masses {mi } located at
positions {xi }. Then, the center of mass of the system of masses c is the
mass-weighted average of positions:

(B.20)

If we act on the center of mass with the derivative operator, it moves it by an
amount Δx:

(B.21)

That is, the derivative moves the center of mass. If the center of mass moves,
then the system of masses must have momentum. Therefore, we identify the
operator ˆp with momentum.

Then, if p̂ has dimensions of momentum, it follows that ħ has dimensions
of energy × time:

(B.22)

Let’s see what that can get us.



B.2 Time Translation and the Schrödinger
Equation
Let’s do the same exercise but for time translation. That is, let’s consider the
transformation that moves the wavefunction in time from t to t +Δt:

(B.23)

Note that moving forward in time means that we shift t by +Δt; this is the
opposite of the case with position x. By our axioms, this preserves the total
probability:

(B.24)

as we assume that the total probability is independent of time. Let’s write this
time translation operator Û in the suggestive exponential form

(B.25)

for some Hermitian operator Ĥ. Taylor expanding both sides of this equation
to linear order in Δt, we find

(B.26)

or that

(B.27)

the time translation operator. Now, we can use our earlier result for the units
of ħ. Because [ħ] = [energy][time], it follows that the units of Ĥ are

(B.28)



Therefore, Ĥ is some measure of the energy of the state represented by ψ(x,
t). The operator Ĥ is called the Hamiltonian and its eigenvalues correspond
to possible energy states of the system.

This isn’t a derivation, per se, but at least a plausibility argument that the
energy (Hamiltonian) operator generates time translations.

From here, we can then derive the differential equation that governs time
evolution of the wavefunction. From earlier, we had identified

(B.29)

or that

(B.30)

This is known as the Schrödinger equation. Given the Hamiltonian of a
system (defining its kinetic and potential energies appropriately), we can
determine the wavefunction at any later time.

In fact, we can explicitly solve the Schrödinger equation, simply by
integrating over time. Integrating both sides over time, we find

(B.31)

where the wavefunction ψ(x, t0) is defined at some initial time, t0. It is easy to
verify that this expression satisfies the Schrödinger equation, using the
fundamental theorem of calculus. In the exponent, we have also explicitly
written the time t′ at which the Hamiltonian is evaluated.

The Taylor expansion of the exponential factor is called the Dyson series.
We can write it as

(B.32)



(B.33)

At quadratic and higher order in the Hamiltonian, we can rewrite the integrals
as nested integrals that are time-ordered. Note that, in general, Hamiltonians
at different times are not identical, and so

(B.34)

in general. Thus, we must be careful with the order of integrals. In quantum
mechanics, this is often accomplished by just explicitly stating that the
operators are time-ordered. When they are time-ordered, their series
corresponds to a unitary operator that can be expressed as an exponential.
The Dyson series is the starting point for Feynman diagrams and their
mathematical justification.



B.3 Heisenberg Equations of Motion
There is another aspect of quantum mechanics that we can define. The
Schrödinger equation governs the time evolution of the wavefunction ψ(x, t);
what governs the time evolution of an operator Ô? There are two answers to
this question. The first is that operators are time-independent, and time
dependence is carried by the states, governed by the Schrödinger equation.
This is called the Schrödinger picture of quantum mechanics. The second
answer is that states are time-independent, while the operators carry time
dependence. This is called the Heisenberg picture of quantum mechanics
and produces identical physical consequences as the Schrödinger picture. We
would like to derive the time evolution equation for operators in the
Heisenberg picture.2

Starting again from the definition of probability, let’s calculate the
expectation value of an operator Ô:

(B.35)

We will assume that Ô is Hermitian in what follows. Evaluating the
expectation value at a later time t +Δt, we have

(B.36)

Here, Û(Δt) is the time translation operator,

(B.37)

Note that the Hermitian conjugate operator Û† (Δt) is therefore

(B.38)

Now, let’s Taylor expand and equate the two expression for this



expectation value. First, with the time derivative and expanding to linear
order in Δt, we have

(B.39)

Here, the · · · denotes terms at order Δt2 and higher. To get the second
equality, we used the Leibniz product rule.

Using the expression for the time translation operator with the
Hamiltonian, we have

(B.40)

Here, [Ĥ, Ô] is the commutator

(B.41)

Setting terms at each order in Δt equal to one another, we then find

(B.42)

If this is to hold for any wavefunction ψ(x, t), then we must have that

(B.43)

This is called the Heisenberg equation of motion.



Note in particular that if we take Ô = Ĥ, then energy is conserved if the
Hamiltonian does not depend explicitly on time. If the Hamiltonian does have
time dependence, then the commutator involves the Hamiltonian evaluated at
different times. As argued earlier, the Hamiltonian does not necessarily
commute with itself evaluated at a different time. Another way to interpret
the Heisenberg equation of motion is that the quantity associated with Ô is
conserved if Ô commutes with the Hamiltonian. That is, Ô generates a
symmetry of the quantum system, by Noether’s theorem.

1 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der
Atomspektren, Vieweg (1931).

2 There is a third picture in which to formulate quantum mechanics, called the interaction
picture. The interaction picture is a hybrid of the Schrödinger and Heisenberg pictures and is
typically the starting point for quantization of relativistic fields.



Appendix C

Particle Physics Jargon Glossary

Particle physics is infamous for using jargon, much of which is initially
colloquial phrases that become de facto technical terms. A number of these
terms are defined and used in the main text, but we collect them here for ease
of identification.

3σ: the size of deviation from the null hypothesis that is considered evidence of new physics;
corresponds to a probability of approximately 1 in 1000 to be described by the null hypothesis

4π hermetic detector: a particle collider detector that, to the greatest extent possible, captures
particles produced from a collision point throughout the 4π steradians of the sphere

5σ: the size of deviation from the null hypothesis that is considered discovery of new physics;
corresponds to a probability of approximately 1 in 3.5 million to be described by the null
hypothesis

associative production: a process in which a particle of interest is produced in collisions, but also
requiring the existence of another particle or other particles in the final state; e.g., to search for
the Higgs boson at LEP, one searches for the Higgs in the final state and a Z boson produced in
association with the Higgs

barrel: the main cylindrical component of a particle collider detector like ATLAS or CMS at the
LHC

baseline: the distance between the point of particle production and the location of detector
experiments; typically refers to the distance between the location of neutrino production (at a
reactor, for example) and a neutrino detector

bin: one element in a histogram defined by its upper and lower limits; a bin is “filled” with events
that satisfy the range of the bin

Bjorken scaling: the observation that, at high energies, the dynamics of quarks inside the proton is
approximately independent of energy or wavelength used to probe the proton; this is a
consequence of the approximate scale invariance of QCD at high energies

branching fraction: the fraction or probability of the time that a particle decays to a particular set
of other particles; the sum of all branching fractions is 1

Brazil plot: a plot used to quantify deviations from expected sensitivity to new physics; its
etymology derives from the bright green and yellow bands used to denote 1σ and 2σ deviations,
respectively

bump hunting: a colloquial name for the experimental search process of measuring distributions of
invariant masses of collections of particles produced in collisions and searching for “bumps”
which would indicate the presence of a new particle

bunch: a collection of numerous particles accelerated together and set to collide with another such



collection; typically, this refers to the collection of about 1011 protons accelerated and collided
at the LHC

decay mode: the transformation of a particle to a particular collection of other particles; each
possible set of particles from a decay is a “mode”

detector-stable: refers to a particle whose lifetime is large compared to the size of a particle
physics detector so that it can be directly measured

dijet: literally “two jet”; a scattering process in which two jets are produced in the final state
dimensional transmutation: the process by which the energy dependence of a dimensionless

quantity (like a running coupling) introduces a dimensionful energy scale
discovery machine: a term used to describe hadron colliders because their center-of-mass collision

energies can be enormous while the individual parton collision energies can range over several
decades of energy; this feature enables searches for new particles and physics without having to
scan over collision energies

doublet: an object that transforms in the two-dimensional representation of SU(2); examples of
doublets include a spin-1/2 field (for SU(2) rotations), the nucleon doublet (for SU(2) isospin),
and the electron and electron neutrino (for SU(2)W)

duality: two distinct yet physically equivalent descriptions of a phenomenon; an example is QCD at
low energies, which can be described either through strongly interacting quarks and gluons or
through weakly interacting hadrons

exclusive cross section: a cross section for a process in which there exists one or more constraints
on the phase space of the final state

external particle: a particle in a Feynman diagram that is in either the initial state or the final state
and whose representation on the diagram consists of one free end; external particles are always
on-shell

flavor-changing neutral current: a process in which a lepton or quark turns into a different flavor
lepton or quark, without changing its electric charge; such processes are forbidden or highly
suppressed in the Standard Model

flavor-diagonal: the property of electromagnetism and QCD that their interactions with fermions
preserve the type or flavor of fermion; for example, on emitting a photon, an electron is still an
electron

gluon–gluon fusion: the dominant collision process for producing a Higgs boson at the LHC or any
hadron collider; refers to the collision of gluon partons in protons to “fuse” into a Higgs boson
through a loop of virtual top quarks

golden channels: decay modes of the Higgs boson that have especially distinct, simple, and clean
experimental signatures; this typically refers to the processes H → l+ l− l′+ l′−, where l and l′ are
electrons or muons, and H → γγ

hit: an observation in an experiment that lies in a region of interest
inclusive cross section: a cross section for a process in which the final state consists of a chosen

selection of particles and anything else
internal symmetry: a symmetry whose transformations do not affect spacetime properties such as

direction of spin, momentum, and energy of a particle
IRC safety: IRC (or “infrared and collinear”) safety is the property of an observable that ensures

that its distribution can be calculated from Feynman diagrams and Fermi’s Golden Rule; an
IRC-safe observable is one for which divergences from infrared (low energy) or collinear



particle emission are localized at isolated points on phase space
Jacobian zero: a zero of a distribution that arises from a change of variables and not because of the

impossibility of a physical configuration
leading order (LO): the collection of Feynman diagrams that have the fewest number of loops that

contribute to a process of interest; Feynman diagrams with one additional loop are called “next-
to-leading order” (NLO), those with two additional loops “next-to-next-to-leading order”
(NNLO), etc.

Lego plot: a plot of the transverse momentum deposited in calorimeter cells versus azimuthal angle
and pseudorapidity; its etymology derives from the similarity of towers of transverse momenta
to towers of stacked Lego toys

look-elsewhere effect: a statistical effect which reduces the significance of an excess over the null
hypothesis in a particular region because there was no a-priori reason to prefer that region over
any other

luminosity: the number of pairs of particles that could interact in a particle collision experiment per
unit area per unit time

manifest symmetry: a symmetry is said to be manifest if it is easily seen to be a symmetry of the
Lagrangian of a system; more precisely, a manifest symmetry is one for which the action of the
symmetry on the Lagrangian and on states is the same

matrix element: a synonym for scattering amplitude that represents the probability amplitude for a
process; its name derives from the scattering matrix or S-matrix which encodes the probabilities
of all initial–to–final-state transitions in a quantum system

Matthew effect: a principle due to social scientist Robert Merton which states that a more famous
scientist will typically get credit over a less famous scientist if their work was similar or even
less important; the term is derived from the parable of the talents in the Synoptic Gospels

maximally violated: a symmetry is said to be maximally violated if, under the action of the
transformation, a physical state turns into a state that has zero probability to exist

Mercedes-Benz configuration: the configuration of three jets produced with approximately equal
energy and approximately 120◦ from one another; the term derives from the similarity to the
emblem of the car manufacturer

Mexican hat potential: the colloquial, yet standard, term for describing the shape of the potential
energy well of the Higgs boson; the term derives from its similar appearance to a sombrero

missing transverse momentum or energy (MET): the transverse momentum necessary to add to
the visible final-state particles to ensure that the total transverse momentum at a collider is zero;
typically, missing transverse momentum is associated with the presence of neutrinos in the final
state

naïve: a somewhat common word in particle physics that effectively means the application of a rule
or equation without consideration of conservation laws, symmetries, or other constraints

off-shell: a particle for which the square of its four-momentum does not equal the square of its
mass; particles that are off-shell are also called “virtual”

on-shell: a particle for which the square of its four-momentum equals the square of its mass;
particles that are on-shell are also called “real”

particle: an object that is localized in space and whose intrinsic properties are unchanged under the
action of any symmetry group; particles are defined by the irreducible representations of
symmetry groups under which they transform



parton: a constituent or “part” of the proton at high energies; partons include the low-mass quarks
and gluons

phenomenology: the study of a particular physical phenomenon; theoretical physicists who work
closely with experiment are often called “phenomenologists”

propagator: an internal line on a Feynman diagram whose two ends are connected at vertices;
propagators express the momentum dependence of the potential of the field that they represent

resummation: the procedure for systematically including the effects of multiple mass or energy
scales in an exclusive cross section; “resummation” refers to the necessity for summing an
infinite tower of terms to all orders in the coupling of the theory of interest that are enhanced by
the presence of large logarithms of dimensionless energy ratios

robust: a result that is unaffected, or only weakly affected, by changes in assumptions; a related
term is “model-independent,” which refers to the consequences of a result being independent of
the model (or theoretical assumptions) under which it is interpreted

rule out: to statistically eliminate the possibility of a deviation from the null hypothesis, typically
with 95% confidence

running coupling: a coupling whose value depends on the energy scale at which it is being probed;
its value is said to “run” with energy scale

scattering angle: the angle between the line along which the momenta of the two final-state
particles lie and the line along which the momenta of the two initial-state particles lie in a 2 → 2
collision process in the center-of-mass frame

semileptonic decay: a process in which a massive particle and its anti-particle are produced, one of
which decays to leptons and the other of which decays to quarks; examples of final states that
can decay semileptonically are W+ W−, ZZ, and tt

singlet: an object that transforms in the one-dimensional representation of a group; such an object
transforms to itself up to an overall phase under the action of the group

soft: synonym for “low-energy”; typically refers to massless force-carrying bosons such as photons
and gluons that have low energy compared to a fiducial energy scale

spontaneous symmetry breaking: when a system whose physical description enjoys a symmetry
but whose ground state does not exhibit that symmetry; an example includes the double-well
potential which is symmetric for x →−x, but the ground state is localized in only one of the two
minima

Stairway to Heaven plot: a summary plot of cross sections, measured at the LHC, of fundamental
processes in the Standard Model; its name derives from the “stairway” of cross sections
distributed over decades of picobarns

Stigler’s law of eponymy: the principle, due to statistician Stephen Stigler, which states that no
scientific discovery is named after its original discoverer; Stigler himself credits Robert Merton
with this principle

tower: an individual element or cell of a particle detector calorimeter that measures the energy
deposited in a finely segmented region of pseudorapidity η and azimuthal angle ϕ

threshold energy: the minimum energy above which a process is kinematically allowed
track: typically used as a synonym for charged particle; references a collection of ionization hits in

the tracking system of a particle detector that is due to a single charged particle
tree diagram: a Feynman diagram that contains no loops, and topologically similar to a tree; an

example of a tree diagram is the leading-order diagram for the process e+ e− → μ+ μ−



trigger: a minimal requirement on the final state that a collision event must pass for it to be
recorded for further analysis

triplet: an object that transforms in the three-dimensional representation of a group; examples
include the three pions π+, π−, π0 (for SU(2) isospin) or a quark (for SU(3) color)

trivial: a transformation is trivial if its action is equivalent to the identity

vev: acronym for “vacuum expectation value,” the magnitude of the scalar field  in vacuum;
fluctuations about this value correspond to the Higgs boson
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